
This work took advantage of a device introduced in 2004c, namely, the use of an effective quadratic cost function to compute the covariance matrix of a deterministic attitude estimation algorithm. The method was formalized in this work and applied to the TRIAD algorithm to show how, within MLE, specific previously discarded components of the unit-vector measurements removed the fourfold degeneracy and converted the TRIAD algorithm to the QUEST algorithm. It led also to a different way to understand the common expression for the TRIAD attitude covariance matrix based on the QUEST measurement model.

Succeeded 2004c.