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INTRODUCTION

A number of algorithms have been proposed for the computation of the

three-axis attitude which minimizes the cost function

L(A) =
1
2

N
∑

k=1

ak
∣

∣Ŵk − AV̂k

∣

∣

2
, (1)

where A is the direction-cosine matrix [ 1 ],
1 Ŵk, k = 1, . . . , N , are directions

(lines of sight, observation vectors) observed in the spacecraft body frame,

V̂k, k = 1, . . . , N , are the corresponding directions known, say, in an inertial

frame (the reference vectors), and ak, k = 1, . . . , N , are a set of positive

weights, assumed to sum to unity. A caret in this work will be used to denote

a unit vector. This cost function was �rst proposed by G. Wahba [ 2 ] in 1965

and has been the starting point of many algorithms [ 3 ],
2

of which the most

popular has been the QUEST algorithm [ 4 ].

Many solutions to the Wahba problem begin with Davenport's q-algorithm

[ 7 ]. Davenport showed that the Wahba cost function could be recast as

L(A) = constant − tr

(

BTA
)

, (2)

where

B ≡
N
∑

k=1

ak ŴkV̂T
k . (3)

and where tr( ··· ) denotes the trace operation, and recast further as the

quadratic form

L(A) = constant − q̄TKq̄ , (4)

where the 4 × 4 matrix K is given by

K =
[

S − s I Z
ZT s

]

, (5)

and

S = B + BT , s = trB , (6ab)

Z = [B23 − B32, B31 − B13, B12 − B21]T . (6c)

Here q̄ denotes the quaternion of rotation [ 1 ].

Minimization of L(A) leads to an eigenvalue equation for K, namely

Kq̄∗ = λmax q̄
∗ , (7)

1
Publications by the author of the present work can be downloaded from the author's website.

2
Ref. 3 gives a masterful overview of the many solutions to the Wahba problem and new theoretical

results. On its numerical results for the QUEST algorithm and their interpretation see Refs. 5

and 6.
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where the asterisk denotes the optimal value and λmax is the largest eigenvalue

of K.

The QUEST algorithm [ 4 ] uses a very e�cient method for both the

determination of the maximum eigenvalue λmax and the construction of the

optimal quaternion. In addition, it o�ered a model covariance matrix based

on the simple measurement model

Ŵk = A V̂k + ∆Ŵk , (8)

with the measurement error ∆Ŵk having approximate �rst and second mo-

ments

E{∆Ŵk} = 0 , (9)

E{∆Ŵk ∆ŴT
k } = σ2

k [I − (A V̂k) (A V̂k)T ] , (10)

where E{ · } denotes the expectation, and I is the 3 × 3 identity matrix. This

leads to the result

Pθθ =

[

N
∑

k=1

1

σ2
k

(

I − Ŵtrue
k Ŵtrue T

k

)

]−1

, (11)

and

Ŵtrue
k ≡ A V̂k , (12)

provided that the weights ak, k = 1, . . . , N , are chosen to be proportional to

1/σ2
k. Note that in actual computations we must replace Ŵtrue

k by Ŵk, because

the former is not known in general. Since we will be interested in calculating

quantities only to lowest nonvanishing order in ∆Ŵk this replacement will not

lead to important errors in general.

The covariance matrix in equation (11) is de�ned in terms of error angles.

If Atrue is the true attitude, and A∗ is the estimated attitude, then the 3 × 1
array of attitude error angles

∆θ∗ ≡ [∆θ∗1 , ∆θ
∗
2 , ∆θ

∗
3]T (13)

are de�ned by

A∗ = C(∆θ∗)Atrue , (14)

where

C(θ) = I +
sin(|θ|)
|θ|

[[θ ]] +
1 − cos(|θ|)
|θ|2

[[θ ]]2 (15)

is the formula for a proper orthogonal matrix parameterized by the rotation

vector [ 1 ] and

[[θ ]] ≡





0 θ3 −θ2

−θ3 0 θ1

θ2 −θ1 0



 . (16)
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Note that for |∆θ| << 1 we have that

C(∆θ) = I + [[∆θ ]] + O(|∆θ|2) . (17)

The attitude covariance matrix is de�ned as

Pθθ ≡ E{∆θ
∗∆θ∗T} . (18)

Markley has developed an equally e�cient algorithm FOAM [8 ], which works

directly in terms of the direction-cosine matrix.

Another important result in the development of solutions to the Wahba

problem was to show that if the measurement model of equations (8)

through (10) is accepted and the measurement errors are assumed to be

Gaussian as well, then maximum-likelihood estimation [ 9 ] of the attitude

leads directly to the Wahba cost function [ 10 ]. This put the Wahba problem

on a �rm statistical footing. The QUEST algorithm has supported numerous

spacecraft missions, beginning with the Magsat mission in 1979. It has the

additional advantage of providing a useful �gure of merit as additional output,

which allows data rejection to be automated easily.

THE PSEUDO-MEASUREMENT

Brozenec and Bender [ 11 ] have presented a method for decreasing the

computational burden for QUEST when attitude was determined from multiple

star-direction data from a star tracker and a second sensor mounted on the

spacecraft. The authors argued that because star trackers generally have very

small �elds of view (generally on the order of ±5 deg/axis), the measurements

will be closely clustered. As a result, the star direction measurements will

provide much less information on the attitude of the spacecraft about the star-

tracker boresight compared with that about the other two axes, a phenomenon

generally known as geometric dilution of precision (GDOP). Since, a second star

tracker or other accurate vector sensor was assumed to be present, this second

sensor would provide a great deal of information about the attitude of the

spacecraft about the �rst star tracker's boresight and vice versa if the second

sensor is also a star tracker. Hence, the authors argued, it was reasonable

to simply average over the directions measured in the star tracker at any one

time, and use the direction of this average as an e�ective measurement for the

attitude. In this way one discards any information about the attitude about

the star tracker boresight. That information, as we have said, is assumed

to be minuscule compared to equivalent information provided by the other

sensor.

Thus, specializing now to the case where one has two star trackers, one

de�nes

̂Wl ≡ unit

(

Nl
∑

k=1

Ŵl,k

)

,
̂Vl ≡ unit

(

Nl
∑

k=1

V̂l,k

)

, l = 1, 2, (19)

where Nl are the number of directions observed by star tracker �l,� and

unit( · ) is the function which generates a unit vector in the same direction
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as its argument if non-vanishing. The spacecraft attitude was determined by

�nding the optimal attitude from the Wahba cost function

L(A) =
1
2

2
∑

l=1

al

∣

∣

∣

∣

̂Wl − A
̂Vl

∣

∣

∣

∣

2

, (20)

with

al =
Nl

N1 +N2
l = 1, 2 . (21)

Thus, no matter how many stars are observed in each tracker, the QUEST

algorithm, or any other optimal algorithm using line-of-sight data, is applied

only to the two e�ective observations, rather than to (N1 +N2) individual star

observations. The weighting of the two terms is based on the assumption

that the two star trackers have the same accuracy and that the individual

measurements of each star tracker have a uniform circle of error. When

the measurements do not all have the same circle of error, the three Nl in

equation (21) should be replaced by

∑Nl

k=1(1/σ2
k, l) , since the weights ought

to re
ect not only the relative quantity but also the relative quality of the

measurements.

An important point is that the QUEST algorithm has a simple closed-form

solution for λmax when there are only two vector measurements [ 4 ], which

would make the Brozenec-Bender solution atttractive if there is no loss in

averaging all of the measurements in one star tracker.

The present work will examine the performance of the Brozenec-Bender

approach and present the results of a detailed covariance analysis. If the

(N1 +N2) line-of-sight measurements were entered directly as inputs into the

Wahba cost function, then the covariance of the resulting attitude would be

simply

P
QUEST
θθ =

[

2
∑

l=1

Nl
∑

k=1

1

σ2
l,k

(

I − Ŵtrue
l,k Ŵtrue T

l,k

)

]−1

. (22)

The σl, k, we have said, are assumed to be equal to a common value σ. The

corresponding attitude covariance matrix for the Brozenec-Bender algorithm

is more complex and will occupy the next section.

COVARIANCE ANALYSIS OF THE BROZENEC-BENDER

PSEUDO-MEASUREMENT WITH TWO STAR TRACKERS

Because the Wahba problem yields the maximum-likelihood estimate of

the attitude given measurements obeying the QUEST model, its attitude

covariance matrix can be computed simply from the Hessian matrix of the

Wahba cost function
3
[ 10 ].

(

P
QUEST
θθ

)−1
=

1

σ2
tot

E

{

∂2

∂θ∂θT
L
(

C(θ)Atrue

)

}∣

∣

∣

∣

θ=0
, (23)

3
The vactor σ−2

tot arises from the fact that we have used unit-norm weights in L, so that it di�ers

by a factor from the negative-log-likelihood function [ 10 ].
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provided we choose

al,k =
σ2

tot

σ2
l,k

, with

1

σ2
tot

=
2
∑

l=1

Nl
∑

k=1

1

σ2
l,k

, (24ab)

and the single summation over k in equation (1) is replaced with a double

summation over l and k. The evaluation of equation (23) leads directly to

the result given in equation (22).

The same is not true with Brozenec-Bender averaging, because the Wahba-

like cost function of equation (20) does not arise from the maximum-likelihood

estimate of the attitude given the Brozenec-Bender e�ective measurements.

Thus, the attitude errors must be computed directly in terms of the measure-

ment errors in the Brozenec-Bender e�ective measurement and the covariance

computed from this. This computation is the subject of most of this work.

(Ref. 4 computed the covariance matrix in this way not only for the TRIAD

algorithm but also for the QUEST algorithm as well, because it was not real-

ized by the author at the time that the Wahba cost function followed directly

from the measurement error model used to calculate the attitude covariance

matrix.)

We thus de�ne unnormalized vectors in a manner similar to that of equa-

tion (19), namely

Wl ≡
Nl
∑

k=1

Ŵl,k , Vl ≡
Nl
∑

k=1

V̂l,k , l = 1, 2. (25)

Clearly,

Wl = AVl + ∆Wl , l = 1, 2 , (26)

with

∆Wl =
Nl
∑

k=1

∆Ŵl,k , l = 1, 2 . (27)

Thus, given the QUEST model for the individual line-of-sight measurements,

we have that ∆Wl has mean zero and covariance matrix

RWl
=

Nl
∑

k=1

σ2
l,k

(

I − Ŵtrue
l,k Ŵtrue,T

l,k

)

, l = 1, 2 . (28)

From

̂Wl = Wl/|Wl| , l = 1, 2 , (29)

it follows that to lowest order in ∆Wl, l = 1, 2,

∆
̂Wl =

1

|Wl|

(

I −̂Wl
̂W

T

l

)

∆Wl , l = 1, 2 . (30)

Thus, the Brozenec-Bender e�ective measurement satis�es

̂Wl = A
̂Vl + ∆

̂Wl , l = 1, 2 , (31)
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with
4

E{∆̂Wl } = 0 , l = 1, 2 , (32a)

E{∆̂Wl∆
̂W

T

l } = R
̂

Wl

, l = 1, 2 , (32b)

and

R
̂

Wl

=
1

|Wl|2

(

I −̂Wl
̂W

T

l

)

RWl

(

I −̂Wl
̂W

T

l

)

, l = 1, 2 . (33)

COVARIANCE ANALYSIS OF THE BROZENEC-BENDER

ALGORITHM FOR TWO STAR TRACKERS

Now that we have a complete model for the Brozenec-Bender measurement,

we may compute the spacecraft attitude. The mechanization of the QUEST

algorithm is straightforward, has been described in detail elsewhere [ 4 ] , and

need not concern us here. What does concern us is the attitude error. To

compute the attitude error, we are interested only in computing C(∆θ∗) =
A∗A−1

true, after which we will extract ∆θ∗ using equation (17). We can compute

C(∆θ∗) most easily be replacing

̂Vl with

̂W
true

l in equation (20), leading to

L (C(∆θ)) =
1
2

2
∑

l=1

al

∣

∣

∣

∣

̂Wl − C(∆θ)̂W
true

l

∣

∣

∣

∣

2

, (34)

Substituting equation (17) and minimizing over ∆θ leads straightforwardly to

∆θ∗ =

[

2
∑

l=1

al

(

I −̂Wl
̂W

T

l

)

]−1 2
∑

l=1

al [[̂Wl ]]∆̂Wl , (35)

whence the attitude covariance matrix for the Brozenec-Bender algorithm is

given by

PBB
θθ =

[

2
∑

l=1

al

(

I −̂Wl
̂W

T

l

)

]−1

2
∑

l=1

a2
l [[̂Wl ]]R

̂

Wl

[[̂Wl ]]T
[

2
∑

l=1

al

(

I −̂Wl
̂W

T

l

)

]−1

, (36)

which should be compared with the result for the QUEST algorithm in

equation (21).

4
Equation (32a) cannot be true exactly because of the norm constraint, but it possesses su�cient

veracity for our purposes. The reader is referred to Ref. 10 for a complete explanation.
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MODEL COVARIANCE ANALYSIS

It follows from the Cram�er-Rao Theorem [ 9 ] that

P
QUEST
θθ ≤ PBB

θθ . (37)

The important question is how large is the di�erence between the two attitude

covariance matrices. To answer this question, we examine the two covariances

in a simple model, in which the star trackers are assumed to have a circular

�eld of view of angular radius ρ and the stars are distributed uniformly over

the �eld of view of each sensor.
5

We will assume further that one star tracker

has its boresight along the spacecraft x-axis and the other about the spacecraft

y-axis. In the frame of each of the star trackers, the boresight will be taken to

be the z-axis. We assume, as in Equation (21) that the two star trackers are

characterized by the same variance σ2
, which is the same for all observations

in the �elds of view of the two star trackers. For each of the two star trackers

the boresight is chosen to be the z-axis of that sensor's reference frame. The

chosen example will present the Brozenec-Bender algorithm to best advantage

and also allow us to develop simple closed-form expressions for the attitude

covariance matrices for the Brozenec-Bender algorithm and QUEST.

In the limit that N1 and N2 are very large we may replace the summation

over the observations to good approximation by an integral. Thus, if f (Ŵ) is

any function of the observations we may write

Nl
∑

k=1

f (Ŵl,k) →
Nl

Ω

∫ 2π

0

∫ ρ

0
f
(

Ŵ(ϑ, ϕ)
)

sin ϑ dϑ dϕ , l = 1, 2 , (38)

with Ω the solid angle subtended by the star tracker �eld of view,

Ω = 2π(1 − cos ρ) , (39)

and

Ŵ(ϑ, ϕ) =





sin ϑ cosϕ

sin ϑ sinϕ

cos ϑ



 . (40)

With these substitutions, and assuming the distribution of observed vectors to

be uniform in the star tracker �eld of view, the inverse covariance matrix for

each star tracker (in that star tracker's reference frame) using the QUEST

algorithm for computing the attitude is

(

P
QUEST
θθ

)−1

l
=
Nl

σ2
diag(a, a, b) , l = 1, 2 , (41)

where

diag(d1, d2, d3) ≡





d1 0 0

0 d2 0

0 0 d3



 , (42)

5
A circular �eld of view is actually not very far-fetched. The very large �elds of view investigated

here could be possible only by means of an optical system, which would create a circular image

on the CCD plane.
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and

a = (4 + cos ρ + cos2 ρ)/6 , (43a)

b = (2 − cos ρ − cos2 ρ)/3 . (43b)

Note that as ρ → 0 we have that a → 1 and b → 0.
The star tracker boresights are along the body x- and y-axes, respectively.

Thus, the covariance matrix above must be transformed for each star tracker

from sensor to body coordinates. Let us denote the two star trackers by sc1

and sc2, respectively. The sensor alignment matrix [ 12, 13 ] has been de�ned

according to

Ŵl, k = Sl Ûl, k , (44)

where Ŵl, k is the representation of the observation in the spacecraft body

frame, Ûl, k is the representation of the same observation in the sensor frame,

and Sl is the alignment matrix of sensor l, a proper orthogonal matrix. The

transformation of only one column vector into another does not completely

specify the transformation matrix. However, since we assume the �eld of view

of each star trackers to be circular, the ambiguity is inconsequential. Thus,

we may chose as the two alignment matrices

Ssc1 = R(
2, −π/2) and Ssc2 = R(
1, π/2) . (45)

with

1̂ ≡





1

0

0



 , 2̂ ≡





0

1

0



 , 3̂ ≡





0

0

1



 , (46abc)

and R(
n, θ) denotes the rotation about the axis 
n through an angle θ.
Applying these to equation (41) leads to

(

P
QUEST
θθ

)−1
= Ssc1

(

P
QUEST
θθ

)−1

sc1
STsc1 + Ssc2

(

P
QUEST
θθ

)−1

sc2
STsc2 (47a)

=
N1

σ2
diag(b, a, a) +

N2

σ2
diag(a, b, a) (47b)

For the Brozenec-Bender algorithm, we obtain straightforwardly in the

individual star-tracker frames (boresight = ẑ)6

6
Note that when we write �boresight = ẑ� we are stating that the physical boresight of the star

tracker is the physical z-axis of the sensor (it would be more exact to add the appropriate subscript

to ẑ since there are four physical z-axes in our problem (sc1, sc2, the spacecraft body, and the

frame of the reference vectors), but when we write
̂

W=3̂ we are stating that the numerical value

of the representation of the boresight vector is given by equation (46c), which is not the same.

The boresight of the �rst star tracker is always ẑsc1 but in body coordinates its representation is

1̂. We could write 
zsc1 as a general notation for the representation of the z-axis of the �rst star

tracker to be consistent with equation (46c)	in Ref. 1 we do just that	but in the present work

we stick with more familiar if less exact notation, particularly since we have avoided ever using

bold Roman letters for anything but the representations of vectors (i.e., 3 × 1 numerical arrays)

so that there is never any confusion.



x

W = Nl

(

1 + cos ρ
2

)

3̂ , and

̂W = 3̂ , (48)

and

RWl
= Nl σ

2
diag(a, a, b) , (49a)

R
̂

Wl

=
σ2

Nl

(

2
1 + cos ρ

)2

diag(a, a, 0) . (49b)

From this it follows that in the spacecraft body frame

2
∑

l=1

a2
l [[̂Wl ]]R

̂

Wl

[[̂Wl ]]T

=
σ2

(N1 +N2)2

(

2
1 + cos ρ

)2
(

N1 diag(0, a, a) +N2 diag(a, 0, a)
)

. (50)

Likewise,

[

2
∑

l=1

al

(

I −̂Wl
̂W

T

l

)

]

=
1

N1 +N2

(

N1 diag(0, a, a) +N2 diag(a, 0, a)
)

, (51)

whence the inverse attitude covariance for the Brozenec-Bender algorithm is

easily shown to be

(

PBB
θθ

)−1
=

1
σ2

(

1 + cos ρ
2

)2 1
a
diag(N2, N1, N1 +N2) , (52)

which should be compared with equation (47b) above. The modi�cation of

these results for the case that the σl, k are not all equal to a universal value

should be obvious from the remarks following equation (20).

If we consider the special case N1 = N2 = N , we obtain the simple results

(

P
QUEST
θθ

)−1
=
N

σ2
diag(a + b, a + b, 2a) , (53a)

(

PBB
θθ

)−1
=
N

σ2

(

1 + cos ρ
2

)2 1
a
diag(1, 1, 2) . (53b)

For ρ << 1 these reduce to

P
QUEST
θθ =

σ2

N
diag[1 − ρ2/4, 1 − ρ2/4, (1 + ρ2/4)/2] , (54a)

PBB
θθ =

σ2

N
(1 + ρ2/4) diag[1, 1, 1/2] . (54b)

Thus, the fractional loss in accuracy is on the order of ρ2
, but for typical

star-tracker �elds of view, ρ is only 5. deg, leading to a loss of accuracy of only
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about one percent. This is certainly negligible. For ρ = π/2, corresponding

to a star tracker whose �eld of view encompasses half the celestial sphere,

we have

P
QUEST
θθ =

3
4
σ2

N
diag[1, 1, 1] , (55a)

PBB
θθ =

8
3
σ2

N
diag[1, 1, 1/2] , (55b)

so that the QUEST algorithm is better (in variance) by a factor of from 1.77

to 3.55 about any axis. This, however, is a very unusual case and clearly

outside the expected range of application of the Brozenec-Bender algorithm.

For ρ = π, the full sky case, the covariance of the Brozenec-Bender algorithm

is in�nite, because the Wl vanish in our example. (If there is no average star

direction, then it cannot be used in an attitude determination algorithm.)

The e�cacy of the Brozenec-Bender algorithm when the �eld of view of

the star tracker is small has been demonstrated for two star trackers.

BROZENEC-BENDER AVERAGING WITH ONE STAR TRACKER

AND ONE SINGLE-VECTOR SENSOR

Let us consider now the alternate case where the �rst sensor is a CCD star

tracker with a circular �eld of view of radius ρ and single-direction standard

deviation σ1 and with generally N1 = N stars in the �eld of view. We will

assume as a typical value ρ = 5 deg and σ1 = 10 arc seconds or approximately

50 microradians, and N = 10. Sensor 2 is a single-direction sensor with

standard deviation σ2 and, clearly, N2 = 1. If Sensor 2 is a precise Sun

sensor then we can expect σ2 to have values close to 10 arc seconds or 50

microradians. Otherwise, if Sensor 2 is a coarse sensor, its accuracy will be

taken as 0.3 deg or approximately 5 milliradians. For de�niteness, we will

assume that Sensor 1, the CCD star tracker, has its boresight aligned with

the spacecraft body x-axis, while Sensor 2 measures a single vector along the

spacecraft body y-axis.

The computation of the spacecraft covariance matrix follows procedures

similar to those of the previously considered case. For the application of the

QUEST algorithm to all of the data without averaging we have for the inverse

covariance matrix

(

P
QUEST
θθ

)−1
=
N

σ2
1

diag(b, a, a) +
1

σ2
2

diag(1, 0, 1) , (56)

showing clearly the two contributions to the inverse covariance matrix. Note

that the inverse covariance (information) for each sensor will be smallest about

the boresight, hence, about the spacecraft body x-axis for the star tracker

(Sensor 1) and about the spacecraft body y-axis for the single-direction sensor

(Sensor 2). With Brozenec-Bender averaging, however, we obtain a slightly

less transparent expression.
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We note �rst that relative weights of the two sensors, according to the

earlier discussion will be

a1 =
N/σ2

1

N/σ2
1 + 1/σ2

2

, a2 =
1/σ2

2

N/σ2
1 + 1/σ2

2

. (57)

The pseudo-measurement covariance matrix for the star tracker (with respect

to sensor coordinates) is again following Equations (28), (33) and (49)

R
̂

W1
=
σ2

1

N

(

2
1 + cos ρ

)2

diag(a, a, 0) , (58)

with a as in Equation (43a), which we write (in body coordinates) as

R
̂

W1
= σ2

eff diag(0, 1, 1) , (59)

with

σ2
eff ≡

σ2
1

N

(

2
1 + cos ρ

)2

a = β

(

σ2
1

N

)

, (60)

and trivially for the single-direction sensor (again in body coordinates)

R
̂

W2
= σ2

2 diag(1, 0, 1) . (61)

Note that for the speci�ed star tracker β ≈ 1 . Equation (50) for the present

case becomes equivalently

2
∑

l=1

a2
l [[̂Wl ]]R

̂

Wl

[[̂Wl ]]T = a2
1 σ

2
eff diag(0, 1, 1) + a2

2 σ
2
2 diag(1, 0, 1) . (62)

Evaluating Equation (36) in this case leads after some manipulation to

(

PBB
θθ

)−1
= diag

[

1

σ2
2

,
1

σ2
eff

,
1

a2
1 σ

2
eff + a

2
2 σ

2
2

]

. (63)

It will be useful to de�ne

c =
Nσ2

2

σ2
1

. (64)

Then

a1 =
c

1 + c
, and a2 =

1
1 + c

, (65)

and also

σ2
eff =

β

c
σ2

2 . (66)

For σ2 = 0.3 deg we have then c ≈ 100, 000, while for σ2 = 3 arc seconds we

have instead c ≈ 1.
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Comparing the diagonal elements of the inverse covariance matrix we obtain

[

(

P
QUEST
θθ

)−1
]

22

/

[

(

PBB
θθ

)−1
]

22
= βa , (67a)

[

(

P
QUEST
θθ

)−1
]

33

/

[

(

PBB
θθ

)−1
]

33
=

(1 + ac)(1 + βc)
(1 + c)2

. (67b)

Note that for ρ = 5 deg we have a = 0.988, β = 1.0002 and βa = 1.000005
so that the attitude accuracy about the y-axis is not a�ected adversely by

Brozenec-Bender averaging, independent of the nature of Sensor 2. For

c = 100, 000 (Sensor 2 is, say, an infra-red horizon scanner) the right member

of Equation (67b) di�ers from unity again by terms of order 10−5
. For

c = 1 (Sensor 2 is a precise Sun sensor), the right member of Equation (67b)

becomes (βa + β + a + 1)/4, which is equally close to unity. Thus, the

attitude determination accuracy about any axis perpendicular to the star-tracker

boresight is not sensitive to the nature of Sensor 2 or to Brozenec-Bender

averaging.

The situation changes for the component about the star-tracker boresight.

In that case we �nd

[

(

P
QUEST
θθ

)−1
]

11

/

[

(

PBB
θθ

)−1
]

11
= 1 + bc , (67c)

where b was de�ned in Equation (43b). For ρ = 5 deg we have b = 4 × 10−3
,

so that the ratio of the inverse covariances is 400 when c = 100, 000 and

1.004 when c = 1. Brozenec-Bender averaging leads to little loss in attitude

determination accuracy about the boresight when the single-vector sensor is of

the same accuracy roughly as the star tracker but a considerable degradation

of the attitude accuracy when the single-vector sensor is not very accurate.

APPLICATION TO THE StarNav STAR TRACKER

Cost factors generally prohibit the implementation of more than a single

star tracker on a spacecraft. However, an interesting idea has been proposed

by Mortari, Pollack and Junkins [ 14 ] of adding a prism to a star tracker so

that a single star tracker can have two orthogonal �elds of view. If we assume

that the �eld of view is the usual 8 deg × 8 deg, then, by matching areas, the

equivalent ρ is 0.787 rad, which leads to

P
QUEST
θθ =

σ2

N
diag[0.9985, 0.9985, 0.5008] , (68a)

PBB
θθ =

σ2

N
diag[1.0015, 1.0015, 0.5008] . (68b)

where we have assumed that the two focal panes intersect in the y-axis. The

di�erence in accuracy (in standard deviation) is only a negligible 0.15 percent.
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The newest StarNav III multiple-FOV star tracker will have three FOV with

optical axes coplanar and separated by 120 deg [ 15 ].

APPLICATION TO A SINGLE STAR TRACKER

We may apply the Brozenec-Bender methodology to an attitude determina-

tion system consisting of a single star tracker by partitioning its �eld of view

into two segments of equal area and treating each segment as an independent

sensor. Thus, if a star tracker with a rectangular �eld of view has dimensions

(full width) of 2α× 2β, we can compute the expected inverse covariance using

the above methods to obtain

(

P
QUEST
θθ (N, α, β)

)−1
=
N

σ2





1 − α2/3 0 0

0 1 − β2/3 0

0 0 (α2 + β2)/3



 . (69)

assuming again that the stars are distributed uniformly in the �eld of view.

Typically, α = β ≈ 4 deg. We shall assume in our example that α = β.
If we now partition the �eld of view by the y axis, we will have two adjacent

�elds of view of dimensions α×2α with optical axes at o�sets of ±α/2 from the

optical axis of the star tracker. Applying the Brozenec-Bender methodology,

equations (25) through (33) lead to within terms of order α2

W1 = (N/2)S1 3̂ , W2 = (N/2)S2 3̂ , (70ab)

R
̂

W1
= S1 R̂Wo

ST1 , R
̂

W2
= S2 R̂Wo

ST2 , (71ab)

where R
̂

Wo

is the expected measurement covariance matrix for a �eld of view

of dimensions α × 2α centered on the origin. To lowest nonvanishing order in

α
(

R
̂

Wo

)

=
2σ2

N





1 0 0

0 1 0

0 0 0



 , (72)

and we have assumed that there are N1 = N2 = N/2 star observations in each

α × 2α partition of the �eld of view, so that also a1 = a2 = 1/2. We may write

the alignment matrices to within terms of order α2
as

S1 = ST2 = R(2̂, α/2) =





c 0 −s
0 1 0

s 0 c



 , (73)

with

s =
α/2

√

1 + α2/4
≈ α/2 , c =

1
√

1 + α2/4
≈ 1 . (74ab)

The evaluation of equation (36) for this case is straightforward and leads

to lowest order in α to

PBB
θθ =

σ2

N





1 0 0

0 1 0

0 0 4/α2



 (75)
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This should be compared with the similar expression for the covariance matrix

for the QUEST estimate, which can be obtained by inverting equation (69)

with α = β. To lowest order in α this is

P
QUEST
θθ =

σ2

N





1 0 0

0 1 0

0 0 3/(2α2)



 . (76)

The standard deviation about the optical axis for the method inspired by

the Brozenec-Bender methodology is larger than the Crem�er-Rao lower bound

by a factor in standard deviation of

√

8/3 or 1.63. This might be a price

worth paying if the computational burden were much smaller. However, the

general solution for the partitioned �eld of view would be the attitude matrix

which minimized the cost function

JBB ≡
1
2

2
∑

l=1

[

̂Wl − A
̂Vl

]T
(

R
̂

Wl

)#
[

̂Wl − A
̂Vl

]

(77)

where # denotes the pseudo-inverse, and now we must compute

̂Wl and R
̂

Wl

,

l = 1, 2, from the data. The solution of equation (77) is straightforward but

considerably more burdensome than calculating the more accurate QUEST

estimate from the N star directions, especially when one considers the large

burden of computing the centroid directions and equivalent centroid-direction

covariance matrices. It is interesting to note that to lowest order in α the

Brozenec-Bender methodology applied to our example leads to the same es-

timate as would have been obtained by applying the QUEST algorithm to

e�ective measurements

̂W1 and

̂W2 with QUEST-measurement-model accura-

cies of Nσ2/2. This will not be true in general. Although the Brozenec-Bender

methodology does not lead to a su�ciently accurate nor simpler algorithm for

estimating the attitude from the data of a single star tracker, it is interesting

that it does so well.

DISCUSSION

The reasons for this great disparity in accuracy about the star tracker

boresight in equation (67c) can be understood more simply than from the

above derivation. The geometric dilution of precision (GDOP) factor of a

sensor with a narrow �eld of view is approximately 1/ sin(α), where α is the

half-cone angle of the sensor. For a typical star tracker with a �eld of view

8 deg × 8 degrees, α ≈ FOV/
√

(12) ≈ 4 deg, and the GDOP factor will be

about 25. Thus, if the attitude accuracy of the star tracker is 3 arcsec per star

and the star tracker measures typically 9 stars, the attitude accuracy about

the average star direction will be

GDOP × σ
√
N

= 25 arcsec . (78)
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This is considerably better than the accuracy of one of the three coarse sensors

listed above, which is typically only about 0.5 deg. Thus, in this case, the

Brozenec-Bender algorithm results in a a worsening of the attitude accuracy

about the average star direction by two orders of magnitude. The Brozenec-

Bender algorithm should not be used in this case. However, if the second

sensor is a precise Sun sensor of accuracy 5.0 arcsec, the Brozenec-Bender

algorithm can be used with assurance.

For two-star-tracker attitude determination systems, it would seem that

the Brozenec-Bender algorithm presents a real computational savings, since

the construction of the Davenport pro�le matrix, B of equation (3), requires

roughly 12N 
oating point multiplications if the standard deviations are not

equal. However, there is a signi�cant sacri�ce if one adopts such a course.

This is the loss of the QUEST output variable TASTE as a �gure of merit for

the optimization. This quantity is expected to have a mean value of 2N − 3
and a variance of 2(2N − 3). Very large deviations from the mean usually

indicate misidenti�ed stars or other bad data. Since TASTE is computed at

almost no additional computation burden by QUEST, it provides the simplest

and cheapest means of data validation. It is, in fact, the introduction of

the TASTE variable, which greatly streamlined attitude mission support for

the Magsat mission and cut processing time by a factor of, perhaps, 12 [ 16 ]

and not QUEST's remarkable speed, which makes the QUEST algorithm so

attractive. It seems unwise to give up this attribute of QUEST to lessen the

computational burden of one small part of the attitude determination system.

Note also that the geometrical dilution of precision is not a �killing� e�ect.

For the example above the attitude accuracy about the boresight is poorer

that that about an axis perpendicular to the boresight by only a factor of

about 8. Thus, if the single-vector sensor has an error level of 0.5 arc minute

(rather than 0.3 deg) one will gain a factor of two in attitude accuracy about

the star tracker boresight by executing the complete QUEST computation. If

the single-attitude sensor has an error level greater than a few arc minutes,

than the accuracy of the data discarded by the Brozenec-Bender method will

overwhelm that of the single-vector sensor for all three axes.

For a multi-�eld-of-view star tracker, like the StarNav star trackers under

development, the Brozenec-Bender methodology may be a very useful path,

especially when these star tracker can observe sometimes 50 stars in each �eld

of view. Its application to the partitioning of the �eld of view of a single

star-tracker, however, leads to a signi�cant loss of accuracy.

Brozenec-Bender centroiding can be incorporated in a more complete

attitude estimator which does not discard data and permits three-axis attitude

estimation with a single star tracker [ 17 ] . Such an algorithm (SCAD) begins

with the centroiding to create e�ective measurements

̂W1 and

̂W2 but uses

the remaining data to determine the rotation about the centroid vector. Such

an algorithm works quite well, but not well enough to be a replacement for

QUEST.
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CONCLUSION

The Brozenec-Bender algorithm, while not adequate when a star-tracker

is paired with a coarse attitude sensor, nonetheless performs extremely well

when the attitude sensors consist of two star trackers or a star tracker and a

second sensor of comparable accuracy. By employing such a method, however,

one gives up other features of the QUEST algorithm, which may be more

signi�cant than speed. For a multi-�eld-of-view star tracker, however, like

StarNav, the Brozenec-Bender method o�ers real advantages. The �eld of

view of a single star tracker can be partitioned to take advantage of the

Brozenec-Bender methodology, but there is signi�cant loss in accuracy about

the star-tracker boresight.
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