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MAGNETOMETER CALIBRATION

FOR THE FIRST ARGENTINE SPACECRAFT

Malcolm D. Shuster∗ and Roberto Alonso†

New algorithms have been developed for the in
ight estimation of magnetometer

biases and other calibration parameters for the �rst Argentine Spacecraft. The

spacecraft will be three-axis stabilized with respect to inertial axes. The algorithms

developed combine the fast convergence of an heuristic algorithm currently in use

with the correct treatment of the statistics of the measurement, and does this without

discarding data. The new algorithm works well even when the magnetometer bias is

comparable in magnitude to the ambient magnetic �eld. The algorithm performance

is examined using simulated data similar to that expected for the �rst Argentine

spacecraft.

INTRODUCTION

The �rst Argentine spacecraft, Satelite de Aplicaciones Cient���cas�B (SAC-B), will be inserted

into a circular orbit with an altitude of 560 km and will be inertially stabilized about all three axes

in order to observe the Sun. The spacecraft orbit will have an inclination of 38 deg.

At orbit injection, the only attitude sensor which may be operating is often the vector magnetometer.

Frequently, the spacecraft is spinning rapidly, and, if the spacecraft is not in an equatorial orbit or

at too high an altitude, it is possible on the basis of this sensor alone (and, of course, a knowledge

of the spacecraft position) to determine the spin rate and the spin-axis attitude of the spacecraft.

At the same time, the accuracy of the magnetometer data may be compromised by large systematic

magnetic disturbances on the spacecraft, often the result of space charging during launch or from

electrical currents within the spacecraft. Thus, some means is usually needed to quickly determine

this bias. Since the three-axis attitude of the spacecraft usually cannot be determined at this stage,

the desired algorithm must not require a knowledge of the attitude as input.

The above situation occurs for nearly every spacecraft. For spacecraft equipped with only a vector

magnetometer and a Sun sensor, three-axis attitude will be computed using the magnetometer data.

In this case, the spacecraft attitude cannot be used directly to determine the magnetometer bias

vector by transforming the reference magnetic �eld to magnetometer coordinates using the computed

attitude and then comparing this transformed reference �eld with the magnetometer measurement.

For such a mission, which occurs quite often, algorithms of the type discussed in this paper are

required.
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A number of algorithms have been proposed for estimating the magnetometer bias. The simplest

is to solve for the bias vector by minimizing the weighted sum of the squares of residuals which are

the di�erences in the squares of the magnitudes of the measured and modeled magnetic �elds [ 1 ] .

Unfortunately, this leads to a cost function which is quartic in the magnetometer bias vector. To

avoid the naive minimization of a quartic function of the magnetometer bias, a number of alternative

methods have been proposed. These comprise the centered algorithm of Gambhir [ 1, 2 ], Davenport's

quadratic approximation [ 3 ], Acu�na's model-independent method [ 4 ], and the �xed-point method

of Thompson [ 5 ]. The new method, which we call TWOSTEP, is an improvement and considerable

extension of Gambhir's algorithm. Gambhir's algorithm did not treat properly the correlations

introduced by the centering process, nor did it attempt to correct for the possibly signi�cant amount

of data which the centering process discards. The new algorithm su�ers from neither of these

drawbacks and is very robust and e�cient as well. The present paper presents the development of

this new algorithm.

THE MEASUREMENT MODEL

We begin with the model

Bk = AkHk + bbb + εεεk , k = 1, . . . , N , (1)

where Bk is the measurement of the magnetic �eld (more exactly, magnetic induction) by the

magnetometer at time tk; Hk is the corresponding value of the geomagnetic �eld with respect to an

Earth-�xed coordinate system; Ak is the attitude of the magnetometer with respect to the Earth-�xed

coordinates; bbb is the magnetometer bias; and εεεk is the measurement noise. The measurement noise,

which includes both sensor errors and geomagnetic �eld model uncertainties, is generally assumed to

be white and Gaussian. This is probably a poor approximation, since the errors in the geomagnetic

�eld model are certainly correlated, and, in fact, generally dominate the instrument errors. However,

for the sake of argument we shall assume here that the errors are white and Gaussian.

To eliminate the dependence on the attitude, we transpose terms in equation (1) and compute

the square, so that at each time

|Hk|
2 = |AkHk|

2 = |Bk − bbb − εεεk|
2 (2a)

= |Bk|
2 − 2 Bk · bbb + |bbb|2 − 2(Bk − bbb) · εεεk + |εεεk|

2 . (2b)

If we now de�ne e�ective measurements and measurement noise according to

zk ≡ |Bk|
2 − |Hk|

2 , vk ≡ 2(Bk − bbb) · εεεk − |εεεk|
2 , (3ab)

then we can write

zk = 2 Bk · bbb − |bbb|
2 + vk , k = 1, . . . , N . (4)

Note that in equations (3b) and (4), Bk is the value about which the measurement is linearized

and therefore must be interpreted as the sampled value of the measured magnetic �eld and not a

random variable in what follows.

Even with the assumption that the original magnetometer measurement noise is white and Gaussian,

the e�ective measurement noise is not exactly white or Gaussian. Thus, if

εεεk ∼ N (0, Σk) , (5)

and

E{εεεk εεε
T
` } = 0 for k 6= ` , (6)
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where E{ · } denotes the expectation, it follows that

µk ≡ E{ vk } = −tr (Σk) , (7a)

σ2
k ≡ E{ v

2
k } − µ

2
k = 4 (Bk − bbb)TΣk(Bk − bbb) + 2

3
∑

i=1

(Σk)2
ii , (7b)

so that vk must contain both Gaussian and χ2 components, as is already evident from equation (3b).

However, since |Bk − bbb| is generally much larger than |εεεk|, the approximation that vk is Gaussian is

very good. In equation (7b) tr ( · ) denotes the trace operation. In addition,

E{ vk v` } = µkµ` , (8)

so that the vk are uncorrelated but not white. If we assume that the noise εεεk is small compared

to the geomagnetic �eld, which is certainly true in low-Earth orbit, then to a large degree vk is

Gaussian and we can write approximately

vk ∼ N (µk, σ
2
k) . (9)

SCORING

Given the statistical model above, the negative-log-likelihood function [ 6 ] for the magnetometer

bias is given by

J (bbb) =
1
2

N
∑

k=1

[

1

σ2
k

(zk − 2 Bk · bbb + |bbb|2 − µk)2 + log σ2
k + log 2π

]

, (10)

which is quartic in bbb. The maximum-likelihood estimate maximizes the likelihood of the estimate of

the bias, which is the probability density of the measurements (evaluated at their sampled values)

given as a function of the magnetometer bias. Hence, it minimizes the negative logarithm of the

likelihood (equation (10)), which thus provides a cost function.

Since the domain of J has no boundaries, the maximum-likelihood estimate for bbb, which we

denote by bbb∗, must satisfy
∂J

∂bbb

∣

∣

∣

∣

bbb∗
= 0 . (11)

Note that only the �rst of the three terms under the summation depends on the magnetometer bias.

Unless one wishes to estimate parameters of the measurement noise, there is no reason to retain

the remaining two terms.3 This quartic dependence can be avoided if complete three-axis attitude

information is available, since the bias term then enters linearly into the measurement model (q.v.

equation (1)) as in the work of Lerner and Shuster [ 7 ] .

The most direct solution is obtained by scoring, which is just the Newton�Raphson method. Since

an a priori estimate of the magnetometer bias is generally not available, we consider the sequence4

bbbNR
0 = 0 , (12a)

bbbNR
i+1 = bbbNR

i −
[

∂2J

∂bbb∂bbbT

(

bbbNR
i

)

]−1
∂J

∂bbb
(

bbbNR
i

)

. (12b)

3In fact, the standard deviations do depend on the bias vector as shown by equation (7b). However, we take the point of view

that the standard deviations are functions of the true value of the bias vector. The dependence of the estimate of the bias vector

on the weights is not very strong in any event.
4Throughout this work we shall use k as the time index and i as the iteration index.
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This series is obtained by expanding J (bbb) to quadratic order in (bbb − bbbNR
i ), setting the gradient of

the truncated series to zero, and solving for bbbi+1. If for some value of i we are su�ciently close to

the maximum-likelihood estimate, then as i tends to in�nity, bbbNR
i will tend toward a minimum or

maximum of J (bbb). Unfortunately, the quartic nature of J (bbb) leads to multiple minima and maxima

so that the convergence to the desired global minimum is by no means guaranteed.

A modi�cation of equations (12) in frequent use is to replace the Hessian matrix (the matrix of

second partial derivatives) of J (bbb), by its expectation value, the Fisher information matrix Fbb. Under

not very restrictive conditions, as the amount of data becomes in�nite (or for even small samples

for Gaussian measurement noise, as assumed here), the estimate error covariance matrix Pbb is the

inverse of the Fisher information matrix. The method of replacing the Hessian matrix by the Fisher

information matrix, called the Gauss-Newton method, usually results in some simpli�cation through

the discarding of complicated terms with vanishing mean, but does not solve the problem of multiple

critical values.

THE CENTERED ESTIMATE

We will develop a new estimation method whose �rst step is similar to the RESIDG algorithm

[ 1 ]. Thus, in order to avoid the minimization of a quartic cost function, let us de�ne in a manner

similar to Gambhir [ 1, 2 ] the following weighted averages

z ≡ σ2
N
∑

k=1

1

σ2
k

zk , B ≡ σ2
N
∑

k=1

1

σ2
k

Bk , v ≡ σ2
N
∑

k=1

1

σ2
k

vk , µ ≡ σ2
N
∑

k=1

1

σ2
k

µk , (13abcd)

where

1

σ2
≡

N
∑

k=1

1

σ2
k

. (14)

Then it follows that

z = 2 B · bbb − |bbb|2 + v . (15)

If we de�ne now

z̃k ≡ zk − z , ˜Bk ≡ Bk − B , ṽk ≡ vk − v , µ̃k ≡ µk − µ , (16abcd)

then subtracting equation (15) from equation (4) leads to

z̃k = 2 ˜Bk · bbb + ṽk , k = 1, . . . , N . (17)

This operation is called centering.

The centered measurements, equation (17), are no longer quadratic in the magnetometer bias

vector, so that using the centered measurements alone we can solve for bbb∗ in a single iteration of

the Newton�Raphson or Gauss-Newton method. However, the centered measurement noise is no

longer uncorrelated. Thus, one can no longer write the negative-log-likelihood function in the form

of equation (10), that is, as the sum of N squares. Nonetheless, in practice attitude ground support

systems have ignored this correlation and used RESIDG to determine the bias from an approximate

cost function of the form

J approx(bbb) =
1
2

N
∑

k=1

1

σ2
k

(z̃k − 2 ˜Bk · bbb)2 , (18)

and achieved reasonable results in spite of the lack of mathematical consistency and rigor, arguing

that one was only discarding a single measurement out of many. In actual practice, these calculations
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have often assumed a constant weighting and neglected the contribution of µ̃k. Gambhir's RESIDG

algorithm [ 2 ], however, is presented with variable weights, although (1) the correlations are not

treated correctly; (2) it used redundant measurements; and (3) it assumed that µ̃k = 0. The

redundancy of the centered mesurements if obvious from

N
∑

k=1

1

σ2
k

z̃k = 0 . (19)

Hence, the centered measurements are not independent.

Minimizing J approx(bbb) over bbb leads to

bbb∗ approx = P
approx

bb

N−1
∑

k=1

1

σ2
k

(z̃k − µ̃k) 2˜Bk , (20)

with the estimate error covariance matrix given approximately by

P
approx

bb ≈
(

F
approx

bb

)−1
=

[

N−1
∑

k=1

1

σ2
k

4 ˜Bk
˜BT
k

]−1

. (21)

Note that µ̃k will vanish only if the original measurement noise εεεk, k = 1, . . . , N , is identically

distributed. Gambhir's RESIDG algorithmr converges in a single iteration because the cost function

is exactly quadratic. However, equations (20) and (21) rest on incorrect statistical assumptions. The

RESIDG result will not be the maximum likelihood estimate, nor will the RESIDG estimate be

consistent, i.e., as the data become in�nitely numerous, the RESIDG result will not converge to the

true value of the magnetometer bias vector.

A STATISTICALLY CORRECT CENTERED ALGORITHM

The original data, zk, k = 1, . . . , N , may be replaced by the centered data, z̃k, k = 1, . . . , N − 1,
and the center value z, without loss of information. The measurement equations are given by

equations (15) and (17). The centered data have the advantage of depending only linearly on the

magnetometer bias. However, they have the disadvantage that the centered measurement noise is

correlated. Therefore, the negative-log-likelihood function for the centered data alone cannot be

written as the sum of N − 1 squares. To write a statistically correct cost function for the centered

data (making the approximation that the measurement noise vk is Gaussian) we de�ne

˜Z ≡ [ z̃1, z̃2, . . . , z̃N−1 ]T , ˜B ≡
[

˜B1,
˜B2, . . . ,

˜BN−1

]T
, (22ab)

˜M ≡ [ µ̃1, µ̃2, . . . , µ̃N−1 ]T , ˜V ≡ [ ṽ1, ṽ2, . . . , ṽN−1 ]T , (22cd)

and write
˜Z = 2 ˜Bbbb + ˜V , (23)

with
˜V ∼ N

(

˜M, ˜R
)

. (24)

Here ˜R is the covariance matrix of ˜V , and ˜M is the mean. The stacked measurement ˜B is an

(N − 1) × 3 matrix, and ˜R is an (N − 1) × (N − 1) positive-de�nite matrix whose elements are fully

populated.

The negative-log-likelihood function for this stacked centered measurement is simply

˜J (bbb) =
1
2

[

(

˜Z − 2 ˜Bbbb − ˜M
)T
˜R−1

(

˜Z − 2 ˜Bbbb − ˜M
)

+ log det ˜R + (N − 1) log 2π
]

. (25)
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Equation (18) expresses the incorrect assumption that ˜R is diagonal. We do not make this

approximation here. Minimizing the negative-log-likelihood function of equation (25) leads directly

to the correctly centered estimate

˜bbb
∗
=
(

4 ˜BT
˜R−1

˜B
)−1

2 ˜BT
˜R−1 (

˜Z − ˜M
)

, (26)

with estimate error covariance matrix

˜Pbb =
(

4 ˜BT
˜R−1

˜B
)−1

. (27)

For large quantities of data, the naive evaluation of equations (26) and (27) can be a formidable

task. Therefore, we seek the means of inverting the matrix in equation (25) explicitly. By direct

substitution,

˜Rk` = E{ (vk − µk)(v` − µ`) − (vk − µk)(v − µ) − (v − µ)(v` − µ`) + (v − µ)2 } . (28)

Evaluating the individual expectations leads to

˜Rk` = σ2
k δk` − σ

2 , (30)

which has the simple inverse
(

˜R−1
)

k`
=

1

σ2
k

δk` +
σ2
N

σ2
kσ

2
`

, (31)

where σ2
N is the variance of vN . Substituting this expression into equation (25) leads to

˜J (bbb) =
1
2

N
∑

k=1

1

σ2
k

(z̃k − 2˜Bk · bbb − µ̃k)2 + terms independent of bbb . (32)

The statistically correct cost function for the centered data, ˜J (bbb), looks exactly like the naive

expression of equation (18) except that the µ̃k is nor correctly present, a truly remarkable result.

The minimization is simple now and leads directly to

˜bbb
∗
= ˜Pbb

N
∑

k=1

1

σ2
k

(z̃k − µ̃k) 2˜Bk , (33)

The estimate error covariance of the centered estimate is given by

˜Pbb = ˜F−1
bb =

[

N
∑

k=1

1

σ2
k

4 ˜Bk
˜BT
k

]−1

. (34)

This correctly centered estimate is more attractive than the heuristic estimate of REDIDG. It is

simple, and it treats the correlation of the centered measurement noise correctly. Although similar

in form, it is very di�erent in character from the centered estimate of Gambhir [ 1, 2 ]. The only

drawback to the centered algorithm lies in the exclusion of certain data, namely, the center term z,
the e�ect of which we investigate and eliminate in the next section. That the redundancy in the N
centered measurements would cancel the e�ect of the correlations was not known to the developer

of RESIDG [ 2 ].
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We note in passing that the calculation of the remaining terms in equation (32) is not di�cult.

The result, which is developed in the appendix, is simply

˜J (bbb) =
1
2

{

N
∑

k=1

[

1

σ2
k

(z̃k − 2˜Bk · bbb − µ̃k)2 + log σ2
k + log 2π

]

−
[

log σ2 + log 2π
]

}

. (35)

THE COMPLETE SOLUTION WITH CORRECTION FOR CENTERING

The rigorously centered algorithm derived above is no more complicated than the naive centered

algorithm presented earlier. From the standpoint of computational burden, the more rigorous

treatment of the statistics has merely included the µ̃k in the cost function. However, equation (35),

because it has been derived rigorously, a�ords us the possibility of computing the correction from

the discarded center measurement z. (Note the nomenclature: center term or center measurement for

z, centered measurements for the z̃k, k = 1, . . . , N .)

Instead of the measurement set { z̃k, k = 1, . . . , N−1; z }, we may now consider the measurements

to be e�ectively {˜bbb
∗
, z }, since for a linear Gaussian estimation problem, the maximum-likelihood

estimate is a su�cient statistic [ 6 ], as we shall demonstrate explicitly below. Therefore, to determine

the exact maximum likelihood estimate bbb∗, we must develop the statistics of these two e�ective

measurements more completely.

To see that ˜bbb
∗
is a su�cient statistic for bbb, substitute equation (17) into equation (33). This leads

to

˜bbb
∗
= ˜Pbb

N
∑

k=1

1

σ2
k

(2 ˜Bk · bbb + ṽk − µ̃k) 2˜Bk , (36)

which we may rewrite as

˜bbb
∗
= bbb + ˜Pbb

N
∑

k=1

1

σ2
k

2˜Bk (ṽk − µ̃k) (37a)

≡ bbb + ṽb . (37b)

The last term is just the (zero-mean) estimate error. Obviously,

ṽb ∼ N
(

0, ˜Pbb
)

. (38)

It follows that we can write

˜J (bbb) =
1
2

(

bbb − ˜bbb
∗)T

˜P−1
bb

(

bbb − ˜bbb
∗)

+ terms independent of bbb , (39)

which can be veri�ed by expanding equation (32) and completing the square in bbb. But this is just

the data-dependent term of the negative-log likelihood function of bbb given equations (37b) and (38).

It is equation (39) which makes ˜bbb
∗

a su�cient statistic for bbb. Equation (39) is very useful, because

it allows us to investigate the e�ect of corrections to the centered formula using only our knowledge

of ˜bbb
∗

and ˜Pbb. We do not have to refer again to the N centered measurements z̃k, k = 1, . . . , N .

We must now combine ˜bbb
∗
and z to obtain a complete representation of our data for the computation

of bbb. Recall equation (15),

z = 2 B · bbb − |bbb|2 + v , (15)
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with

v ∼ N (µ, σ2) . (40)

Note that z, which, unfortunately, is a nonlinear function of bbb, is nonetheless an extremely accurate

measurement, more accurate than the other measurements by typically a factor of 1/
√
N , because

σ is smaller typically than the other variances by this factor. Thus, simply centering the data can

entail a signi�cant loss of accuracy if the sensitivity of z to bbb is not small.

What is the correlation between ṽb and v? Calculating this explicitly, gives

E{ ṽb(v − µ) } = ˜P

N
∑

k=1

1

σ2
k

˜BkE{ (ṽk − µ̃k)(v − µ) } (41a)

= ˜P

N
∑

k=1

1

σ2
k

˜Bkσ
2 (41b)

= 0 , (41c)

since from equation (16b)
N
∑

k=1

1

σ2
k

˜Bk = 0 . (42)

Thus, ṽb and v are uncorrelated. Since the measurement errors were assumed to be Gaussian, it

follows that ṽb and v are independent. The joint probability density function of ṽb and v is therefore

the product of the two individual probability density functions. Thus, the two corresponding negative-

log-likelihood functions add,

J (bbb) = ˜J (bbb) + J (bbb) , (43)

with ˜J (bbb) given by equation (39) and

J (bbb) =
1
2

[

1

σ2
(z − 2 B · bbb + |bbb|2 − µ)2 + log σ2 + log 2π

]

. (44)

The weight associated with the center term J (bbb) is equal to the sum of all the weights of ˜J (bbb). Thus,

when B−bbbtrue is not small, the loss of accuracy from discarding the center time can be substantial, as

we shall see explicitly in some of the numerical examples. We can determine the relative importance

of these terms to the estimate accuracy by computing the Fisher information matrix Fbb to obtain

Fbb = E

{

∂2J

∂bbb∂bbbT

}

= E

{

∂2
˜J

∂bbb∂bbbT

}

+ E

{

∂2J

∂bbb∂bbbT

}

= ˜Fbb + F bb (45a)

= ˜P−1
bb +

4

σ2
(B − bbb)(B − bbb)T (45b)

= P−1
bb . (45c)

The estimate error covariance matrix will be the inverse of this quantity. If the distribution of the

magnetometer measurements is �isotropic,� that is, if B−bbbtrue vanishes, then J (bbb) will be insensitive

to bbb. It is in this case that the centering approximation obviously leads to the best results. If,

however, one attempts to determine the magnetometer bias from a short data span, say, from an

inertially stabilized or Earth-pointing spacecraft, then B−bbbtrue will be equal to the similar expression

for a typical value of the magnetic �eld, and the formerly discarded center term which will provide

half or more of the accuracy, especially for the component along B − bbbtrue.
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Because ˜bbb
∗

provides a consistent estimator of the magnetometer bias vector, its errors are

characterized by the Fisher information matrix, which can then be used to assess the need to

compute the correction due to the discarded center term. If a diagonal element of the Fisher

information F bb of the center term alone computed at ˜bbb
∗

is large compared to the corresponding

element of ˜Fbb then we must compute the center correction. If it is smaller in all three cases, the

center term may be discarded without worry. We are thus led to a two-step algorithm, which we call

TWOSTEP, which is as follows:

• We compute the centered estimate ˜bbb
∗

of the magnetometer bias and the covariance matrix ˜Pbb
using the centered data and equations (33) and (34).

• At the centered estimate ˜bbb
∗

we compute ˜Fbb and F bb. If the diagonal elements of F bb are

su�ciently small compared with the corresponding elements of ˜Fbb,

[F bb]mm < c [ ˜Fbb]mm , m = 1, 2, 3 , (46)

then we will terminate the computation of the magnetometer bias at the computation of ˜bbb
∗

and

accept this value as the estimate with the estimate error covariance matrix given by the inverse of
˜Fbb. Otherwise,

• Using the centered estimate ˜bbb
∗

as an initial estimate, the correction due to the center term is

computed using the Gauss�Newton method

bbbi+1 = bbbi − F
−1
bb (bbbi) ggg(bbbi) , (47)

where the Fisher information matrix Fbb(bbb) is given by equation (45), and the gradient vector is

given by the sum of the gradients of equations (39) and (44)

ggg(bbb) = g̃gg(bbb) + ggg(bbb)

= ˜P−1
bb (bbb − ˜bbb

∗
) −

1

σ2
(z − 2 B · bbb + |bbb|2 − µ) 2 (B − bbb) . (48)

• The iteration is continued until

ηi ≡ (bbbi − bbbi−1)TFbb(bbbi−1) (bbbi − bbbi−1) (49)

is less than some predetermined small quantity.

Since the centered estimate was consistent, we expect that

δ ≡ (bbb∗ − ˜bbb
∗
)T ˜P−1

bb (bbb∗ − ˜bbb
∗
) (50)

will not be large. If bbb∗ were the exact value of bbb, then we should expect that this quantity would be

χ2(3), which has mean 3 and variance 6. The mean and variance of δ should be typically smaller

than this. A large value of δ might indicate convergence to a non-global minimum of J (bbb).

How large should c be in the test for computing the center correction, equation (46)? If we

choose c to be 0.5, then the center correction will be computed only if it improves the accuracy by

at least 20 per cent. If we choose c to be 0.1, then the center correction will be computed only if

it improves the accuracy by at least 5 per cent. A reasonable value for c seems to be somewhere

between these two numbers, depending on the taste of the user.



38

Table 1. Performance of TWOSTEP for SAC-B.

step bias estimate (mG)

bbbtrue = [ 10., 20., 30. ] mG.

centering approximation [ 9.92, 20.00, 29.68 ]
±[ 0.14, 0.33, 0.98 ]

with center correction [ 9.94, 19.94, 29.92 ]
±[ 0.11, 0.17, 0.11 ]

bbbtrue = [ 100., 200., 300. ] mG.

centering approximation [ 99.92, 200.01, 299.68 ]
±[ 0.14, 0.33, 0.98 ]

with center correction [ 99.94, 199.94, 299.92 ]
±[ 0.11, 0.17, 0.11 ]

NUMERICAL EXAMPLES FOR THE MAGNETOMETER BIAS ESTIMATOR

The new algorithm developed in this work has been examined for the SAC-B orbit parameters

and inertial three-axis stabilization. The geomagnetic �eld in our studies has been simulated using

the International Geomagnetic Reference Field (IGRF (1985)) [ 8 ], which has been extrapolated to

1994. More recent �eld models are available, but IGRF (1985) is adequate for our simulation needs.

For purposes of simulation we have assumed an e�ective white Gaussian magnetometer measure-

ment error with isotropic error distribution and a standard deviation per axis of 2.0 mG, corresponding

to an angular error of approximately 0.5 deg at the equator. We have assumed also, following the

example of SAC-B, that the x-axis of the magnetometer is parallel to the spacecraft spin axis, which

always points toward the Sun. The Sun direction makes an angle of approximately 40 degrees with

the orbit plane. The magnetometer data were sampled every eight seconds, which is the sampling

frequency for SAC-B. All entries in the tables for the estimated magnetometer bias and the associated

standard deviations are in mG.

We have generally displayed all iterations up to convergence to two decimal places. The results

are seen to be quite good in all cases. In only a few cases (in Table 2 below) were more than one

iteration of the center correction required to this accuracy, and this only for grossly mismodeled

errors. In most cases, the centering approximation alone was su�cient to this level of accuracy.

Nearly 200 di�erent cases were simulated in testing the algorithm. The above cases were typical

except that we have modi�ed the �eld model slightly so that the third component of the bias would

be less observable from the centered data alone. This was done to illustrate more acutely the

possible importance of the center correction and the performance of the special algorithm developed

for cases of poor observability.

Note in Table 1 the similarity of the fractional parts of the estimates for the small and large values

of the bias, the result of using the same seed in each case.
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ROBUSTNESS OF TWOSTEP

Thus far, both the estimator and the data have used identical statistical assumptions, in particular,

it has been assumed that the fundamental magnetometer measurement noise is white and Gaussian.

In general, it is neither of these, although estimators nearly always assume such a measurement noise

model. This is the case for TWOSTEP. To test the sensitivity to these sweeping and not totally

correct modeling assumptions, we have examined two cases. In the �rst case, we have replaced the

white Gaussian noise sequence εεεk by a colored noise sequence described by a �rst-order Markov

process driven by white noise. The �time constant� of the Markov process has been chosen to

correspond to an orbital arc length of 18 deg, consistent with the correlation length associated with

the neglected orders of the harmonic expansion of the magnetic �eld model. The power spectral

density of the white-noise driving term has been chosen so that the covariance matrix of the stationary

�rst-order Markov process will match that of the Gaussian white-noise model used in Table 1. The

results are shown in Table 2. The iteration index �1� is the centering approximation, further indices

refer to iterations of the center correction. The quality of the estimates has deteriorated somewhat

because the estimator now contains model errors. As a result, the actual errors are outside the

error bounds computed by TWOSTEP based on its now incorrect assumptions on the nature of the

measurement noise. However, for all practical purposes the results are still quite good.

In a further numerical experiment, we have attempted to model the measurement noise as

realistically as possible. To this end we have considered the properties of magnetometers constructed

at NASA Goddard Space Flight Center [ 4 ]. These are characterized by a white noise and ripple

e�ects of about σo = 0.6 mG per axis. In addition, the usable range of the magnetometer, from

−600 mG to +600 mG is usually represented digitally by 12 bits, corresponding to a resolution of

0.29 mG ≡ ∆. Thus, we may regard the telemetered �eld to be given (in counts) by

BT/M
k = Int[(Ak Hk + bbb + wk)/∆] , (51)

where Int( · ) is the function which computes the greatest integer for each component of its argument,

and wk is Gaussian white noise whose covariance is given by (0.6 mG)2 I3×3. The measurements

would then be reconstructed from telemetry according to the prescription

Bk = ∆
[

BT/M
k + [0.5, 0.5, 0.5]T

]

. (52)

The model geomagnetic �eld model errors we have used the harmonic expansion coe�cients of

IGRF(85) up to order 10 to compute the raw measurements, but have used the coe�cients only up

to order 8 in the estimator. The TWOSTEP estimator has considered an estimator based solely on

the known random and quantization errors, that is, it assumes

Σk =
(

σ2
o +

∆2

12

)

I3×3 . (53)

The results of the magnetometer bias determination given this mismatch between measurement noise

and estimator are shown in Table 3. The results again clearly show errors that are signi�cantly larger

than the statistical limits computed from the estimators error model but are quite acceptable also in

this case. Note that proportionately the agreement is greater for the larger biases in both Table 2

and Table 3, because the modeling errors are proportionately smaller. We see in these examples of

mismodeling some of the few cases where more than one iteration of the center correction has been

needed. The result of that further iteration can hardly be called signi�cant, however.

ESTIMATION OF THE MAGNETOMETER BIAS, SCALE FACTORS,
AND NON-ORTHOGONALITY CORRECTIONS

The algorithm presented above is easily extended to include the estimation of scale-factor and non-

orthogonality corrections. Like the scale factor corrections, non- orthogonality corrections have their
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Table 2. Performance of TWOSTEP for Colored Noise.

iteration bias estimate (mG)

magnetometer bias = [10., 20., 30. ] mG

1 [ 10.80, 19.76, 32.91 ] ± [ 0.17, 0.26, 0.77 ]
2 [ 10.56, 20.16, 31.68 ] ± [ 0.09, 0.09, 0.11 ]
3 [ 10.56, 20.16, 31.69 ] ± [ 0.09, 0.09, 0.11 ]

magnetometer bias = [100., 200., 300. ] mG

1 [ 100.16, 198.71, 302.99 ] ± [ 0.17, 0.26, 0.76 ]
2 [ 99.67, 199.53, 300.47 ] ± [ 0.09, 0.09, 0.11 ]
3 [ 99.67, 199.52, 300.49 ] ± [ 0.09, 0.09, 0.11 ]

Table 3. Performance of TWOSTEP for a �Realistic� Measurement Noise Simulation.

iteration bias estimate (mG)

magnetometer bias = [10., 20., 30. ] mG

1 [ 9.85, 20.26, 30.53 ] ± [ 0.05, 0.08, 0.23 ]
2 [ 9.73, 20.45, 30.52 ] ± [ 0.03, 0.03, 0.03 ]

magnetometer bias = [100., 200., 300. ] mG

1 [ 98.82, 200.36, 300.02 ] ± [ 0.05, 0.08, 0.23 ]
2 [ 99.82, 200.36, 300.02 ] ± [ 0.03, 0.03, 0.03 ]

origin solely in the magnetometer, and occur because the individual magnetometer axes are not

orthonormal due typically to thermal gradients within the magnetometer or to mechanical stresses

from the spacecraft.

We assume now that the magnetometer measurements can be modeled as

Bk = (I +D)−1(OTAkHk + bbb + εεεk) , (54)

where O is a proper orthogonal matrix (which is not observable from measurements of magnitudes

alone), D is a fully-populated symmetric matrix and, therefore, depends on six parameters, which we

may take to be the upper triangular elements of D.

To estimate D and bbb de�ne the quantities

E ≡ 2D +D2 ,ccc = (I +D) bbb . (55ab)

The matrix E is symmetric but not diagonal. Thus, in terms of the quantities

zk = −BT
kEBk + 2BT

kccc − |bbb(ccc, E)|2 + vk . (56)
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We may write

BT
kEBk = KkE , (57)

with

Kk ≡ [B2
1,k, B

2
2,k, B

2
3,k, 2B1,kB2,k, 2B1,kB3,k, 2B2,kB3,k ] , (58a)

E ≡ [E11, E22, E33, E12, E13, E23 ]T . (58b)

Thus,

zk = −KkE + 2 BT
kccc + |bbb(ccc, E)|2 + vk (59a)

= Lk θθθ
′ + |bbb(θθθ′)|2 + vk , (59b)

with

Lk ≡ [ 2BT
k | −Kk ] , θθθ′ ≡

[

ccc
E

]

. (60)

θθθ′ is 9 × 1 and Lk 1 × 9. De�ning

L ≡ σ2
N
∑

k=1

1

σ2
k

Lk ,
˜Lk ≡ Lk − L , (61)

the centered and center measurements become

z̃k = ˜Lk · θθθ
′ + ṽk , k = 1, . . . , N z = Lθθθ′ + |bbb(θθθ′)|2 + v . (62ab)

Solving equations (46) for bbb(θθθ′) leads to

|bbb(θθθ′)|2 = cccT(I +D)−2ccc = cccT(I + E)−1ccc (63)

The partial derivatives of |bbb(θθθ′)|2 are given by

∂

∂cm
|bbb(θθθ′)|2 = 2

(

(I + E)−1ccc
)

m
, (64a)

∂

∂Em,n
|bbb(θθθ′)|2 = −(2 − δmn)

(

(I + E)−1ccc
)

m

(

(I + E)−1ccc
)

n
, (64b)

where
(

(I + E)−1ccc
)

m
denotes the mth element of

(

(I + E)−1ccc
)

. Note that the intermediate parameters

ccc and E have been introduced in order that the only nonlinear dependence will be found in |bbb(θθθ′)|2.

The calculation of the centered estimate leads to

˜J =
1
2

N
∑

k=1

1

σ2
k

(

z̃k − ˜Lk θθθ
′ − µ̃k

)2
+ terms independent of θθθ′ , (65)

whence,

θ̃θθ
′ ∗
= ˜Pθ′θ′

N
∑

k=1

1

σ2
k

(z̃k − µ̃k) ˜LT
k ,

˜P−1
θ′θ′ =

N
∑

k=1

1

σ2
k

˜Lk
˜LT
k . (66ab)

and the center cost function is

J (θθθ′) =
1

2 σ2
(z − Lθθθ′ + |bbb(θθθ′)|2 − µ)2 . (67)
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The center contribution to the Fisher information matrix (for us the inverse covariance) is simply

P
−1
θ′θ′ =

1

σ2

(

L −
∂|bbb|2

∂θθθ′T

)T(

L −
∂|bbb|2

∂θθθ′T

)

. (68)

Following the calculation of ccc∗ and E∗, we must compute D∗ and bbb∗. To compute D∗ we write

E∗ = USUT , (69)

where U is orthogonal and S diagonal,

S = diag(s1, s2, s3) . (70)

We de�ne W to be the diagonal matrix diag(w1, w2, w3) satisfying

S = 2W +W 2 , (71)

In general, the elements of S are much less than unity so that a solution will exist. The diagonal

elements of W have the solution

wj = −1 +
√

1 + sj , j = 1, 2, 3 . (72)

The maximum likelihood estimate of the scale-factor-nonorthogonality matrix D is then given by

D∗ = UWUT , (73)

with U the orthogonal matrix of equation (50). The maximum likelihood estimate of the magnetometer

bias vector is then given �nally by

bbb∗ = (I +D∗)−1ccc∗ . (74)

To transform the covariance matrix of θθθ′ to the covariance matrix of θθθ we perform the transformation

Pθθ =
(

∂(bbb, D)
∂(ccc, E)

)

Pθ′θ′

(

∂(bbb, D)
∂(ccc, E)

)T

(75)

where we have de�ned

D ≡ [D11, D22, D33, D12, D13, D23 ]T . (76a)

θθθ =
[

bbb
D

]

(76b)

Then
(

∂(bbb, D)
∂(ccc, E)

)

=
(

∂(ccc, E)
∂(bbb, D)

)−1

=
[ (I +D) McD(bbb)

O6×3 2 I6×6 +MED(D)

]−1

(77)

with

McD(bbb) =







b1 0 0 b2 b3 0

0 b2 0 b1 0 b3

0 0 b3 0 b1 b2






, (78a)
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and

MED(D) =

























2D1 0 0 2D4 2D5 0

0 2D2 0 2D4 0 2D6

0 0 2D3 0 2D5 2D6

D4 D4 0 D1 +D2 D6 D5

D5 0 D5 D6 D1 +D3 D5

0 D6 D6 D5 D4 D2 +D3

























. (78b)

The extension of the calibration is possible only for the linear corrections of the magnetometer bias

vector.

NUMERICAL EXAMPLES FOR THE ESTIMATION OF OTHER PARAMETERS

The algorithm for the estimation of magnetometer biass, scale factors, and nonorthogonality

corrections was examined for the SAC-B spacecraft using the same simulation parameters as in

the previous numerical section. The TWOSTEP algorithm converged to the correct solution with

customary rapidity. We have simulated these results for the case of a fully populated matrix D.

These results are shown in Table 4. The agreement is quite good and the errors in the estimates

are consistent with the computed estimate error covariance matrix.

In Tables 5 and 6 we have examined the behavior of the algorithm when the measurement noise

has been mismodeled. Table 5 used the colored noise model in simulating the measurements. Table 6

used the �realistic� noise model. In all three cases two orbits of data were used. The con�dence

intervals were calculated on the basis of the Gaussian statistics by the estimator. Clearly, despite

the fact that the estimator continues to assume Gaussian white noise, the agreement is quite good.

As expected, the actual errors are typically much larger than would be expected from the computed

con�dence intervals, which asssume a di�erent noise model.

Table 4. Estimation of Magnetometer Biases, Scale factors, and Non-Orthogonality Corrections for

the SAC-B Spacecraft using TWOSTEP. θθθ is the parameter, ˜θθθ
∗
is the centered estimate, and θθθ∗ is

the centered estimate with center correction.

θθθ ˜θθθ
∗

θθθ∗

b1 200. mG 196.97 ± 2.7 191.00 ± 2.5
b2 100. mG 87.93 ± 1.1 98.95 ± 1.0
b3 −200. mG −166.71 ± 4.0 −204.40 ± 3.0
D11 .05 .032 ± .018 .022 ± .018
D22 .10 .110 ± .014 .093 ± .010
D33 .05 .219 ± .210 −.073 ± .040
D12 .05 .037 ± .014 .056 ± .005
D13 .05 .070 ± .050 .063 ± .023
D23 .05 −.018 ± .056 .063 ± .007
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Table 5. Estimation of Magnetometer Biases, Scale factors, and Non-Orthogonality Corrections for

the SAC-B Spacecraft and Colored Measurement Noise using TWOSTEP. θθθ is the parameter, ˜θθθ
∗

is the centered estimate, and θθθ∗ is the centered estimate with center correction.

θθθ ˜θθθ
∗

θθθ∗

b1 30. mG 30.42 ± .23 30.61 ± .17
b2 60. mG 60.17 ± .16 60.22 ± .14
b3 90. mG 90.14 ± .18 90.21 ± .14
D11 .05 .0505 ± .0016 .0514 ± .0010
D22 .10 .0990 ± .0016 .0999 ± .0010
D33 .05 .0494 ± .0015 .0503 ± .0010
D12 .05 .0508 ± .0007 .0509 ± .0007
D13 .05 .0509 ± .0007 .0509 ± .0007
D23 .05 .0497 ± .0008 .0498 ± .0008

Table 6. Estimation of Magnetometer Biases, Scale factors, and Non-Orthogonality Corrections for

the SAC-B Spacecraft and �Realistic� Measurement Noise using TWOSTEP. θθθ is the parameter,
˜θθθ
∗

is the centered estimate, and θθθ∗ is the centered estimate with center correction.

θθθ ˜θθθ
∗

θθθ∗

b1 30. mG 30.58 ± .08 30.73 ± .06
b2 60. mG 50.76 ± .06 60.81 ± .05
b3 90. mG 90.86 ± .06 90.92 ± .05
D11 .05 .052 ± .0006 .053 ± .0003
D22 .10 .102 ± .0006 .103 ± .0004
D33 .05 .053 ± .0005 .053 ± .0003
D12 .05 .050 ± .0002 .050 ± .0002
D13 .05 .050 ± .0002 .050 ± .0002
D23 .05 .050 ± ..0003 .050 ± .0003

DISCUSSION

A new algorithm, TWOSTEP, has been developed, which is e�cient and robust, and which leads

to a consistent estimate of the magnetometer bias at both steps of the algorithm. Its ability to

converge in all cases (nearly 200 have been simulated by the authors) is due to the fact that, if

the magnetometer bias is observable at all, the centering approximation will yield a consistent and

unambiguous result. Thus, the center correction, in most cases, makes little improvement in the

estimate.

Important components in the development of the algorithm was the correct treatment of the

correlations introduced by the centering process and the avoidance of double counting of the

measurements. We have shown that the correct treatment leads to a the centered negative-log-

likelihood function which is the sum of squares.
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An obvious characteristic of the centered estimate, the �rst step in TWOSTEP is that it is often

good enough.6 The Fisher information associated with ˜bbb genuinely characterizes the quality of the

centered estimate. A comparison of this and the Fisher information associated with the center term

can be used to decide whether it is worthwhile to carry out the center correction.

Note that the variances σ2
k given by equation (7b) are functions of bbb. We have taken them to

be functions of the true value of bbb and not of the corresponding model variable which appears in

the cost function. Had we taken bbb to be a parameter of σ2
k also, then we would have di�erentiated

also the factors 1/σ2
k and the terms log σ2

k appearing in equation (10). This latter approach would,

in principal, have been more correct, but might have led to convergence problems because of the

nonlinearity. However, a consistent estimate of bbb can be obtained for any set of the values for the

σ2
k, so that the added complication of making σ2

k a function of bbb in the cost function is not justi�ed.

Nonetheless, for consistency, once ˜bbb
∗

has been determined from our initial set of σ2
k, which were

computed using bbb = 0, we have recomputed the σ2
k using ˜bbb

∗
as the �true� value and repeated the

centering step to obtain an �improved� but hardly very di�erent value for ˜bbb
∗
. Thus, our two-step

method typically incorporates at least two iterations in the �rst step alone, and combines both

scoring and �xed-point techniques. In a more realistic calculation, of course, one should give up the

approximation that the e�ective magnetometer errors are isotropic and white. However, experience

has shown us that the estimates are not very sensitive to the choice of the σ2
k, at least not for the

SAC-B orbit, which never comes within 50 degrees of the poles. Thus, the choice of the σ2
k does

not seem to be important to the estimation problem. The di�culties that have been encountered

up to now in estimating the magnetometer bias vector without knowledge of the attitude did not

arise from an unrealistic modeling of the error levels but rather from the improper treatment of the

non-quadratic nature of the cost function. Our goal in developing the TWOSTEP algorithm was

not to make insigni�cant gains in computation times but to develop an algorithm which was more

reliable than its predecessors.

More interesting would be the computation of the parameters of Σk, which are of fundamental

importance. However, experience has shown that the most signi�cant errors are those associated

with the magnetic �eld model, which, to be meaningful, should be represented in a topocentric

coordinate system associated with the geomagnetic dipole �eld. Such a representation of Σk is

impossible without a knowledge of the spacecraft attitude. One may question also the wisdom of

modeling the geomagnetic �eld errors as a white Gaussian process. Therefore, the estimation of

error-level parameters, except at the crudest level, is not appropriate to the present study. For a

detailed discussion of the errors in geomagnetic �eld models the reader is referred to Langel [ 8 ]

and the two special issues devoted to the Magsat mission [ 9, 10 ] .

TWOSTEP provides insights into the nature of ill-conditioned cases. It is very clear from

our discussion that observability of the magnetometer bias is tantamount to observability from the

centered data alone. Thus, in order to measure the three components of the bias one requires at

least four magnetometer measurements. Otherwise, the quadratic dependence of the measurement

on the bias will lead to a two-fold ambiguity. In some cases the ambiguity can be eliminated, in

others, however, the solution may remain indeterminate. This is a problem not of the method but

of the data. Other methods will fail to produce a result with even greater frequency, and provide

less understanding of the reasons for failure.

TWOSTEP has been shown to work well even when the assumption of white Gaussian statistics

is incorrect. The main reason for this is that the separation of the cost function into ˜J (bbb) and J (bbb)
doesn't really depend on the statistical assumptions. Thus, the TWOSTEP algorithm will lead to

an exact minimization of the cost function even if the statistical assumptions are not justi�ed. There

is still a price to be paid for incorrectly modeled statistics, however, which is that the computed

con�dence intervals will not be correct, as we have already seen in the numerical examples.

6Perhaps we should call it ONESTEP, not very danceable until one recalls the �hop!�
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TWOSTEP is certainly more sophisticated statistically and more capable than its predecessor

algorithms for attitude-independent magnetometer calibration, more e�cient computationally, and

more reliable. Perhaps, most importantly, the new algorithm makes manifest the physical quantities

which determine the behavior of the bias estimator. We hasten to point out that the algorithm

can only be as good as the validity of its statistical model. If the e�ective measurement noise is

incorrectly modeled, then the new algorithm will certainly show systematic errors (if the µk have

incorrect values) or at least larger errors. This has been seen in some of the cases examined above

where the measurement noise has been intentionally mismodeled. Although the errors levels were

much larger than the naive statistical predictions in this case, as expected, the accuracy level was

certainly usable.
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