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The Geometry of the
Euler Angles

John L. Junkins' and Malcolm D. Shuster-

Abstract

The Euler angies are shown to provide a simpie means for understanding some of the
fundamental resuits of spherical trigonometry. Spherical trigonometry, in turn. is used to

develop a compact expression for the composttion of two sets of Euler angles and other
relations.

Introduction

The Euler angles and spherical trigonometry are generally treated as separate
subjects. However, treating the two together will lead to new insights and some
new results. Of particular interest for us has been the development of an expres-
sion for the composition of two rotations, each parameterized by the Euler angles.
Generally, to accomplish this composition. the two rotations described by Euler
angle sequences must first be expressed as direction-cosine matrices. the two
direction-cosine matrices multiplied together. and then the rules for extracting
Euler angies applied. It turns out that a much simpler procedure exists but is not
generally known. In developing such a procedure, a better understanding of spheri-
cal trigonometry is also obtained. Spherical trigonometry also elucidates the con-
nection between closely related sets of Euler angles.

Spherical Trigonometry

Let A ﬁ, and é be three unit vectors, which we may represent as three points
on the unit sphere {1] as shown in Fig. 1. Here a, b, and c, are the lengths of the
arcs of great circles connecting the three points. If O (not shown) is the center of
the unit sphere, then these three arc lengths are equal to the three angles BOC,
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532 Junkins and Shuster

FIG. 1. A Spherical Triangie.

COA, and AOB, respectively. In addition to these three arc lengths, we may define
the three dihedral angles, which are the angles between the planes defined by the
center and two of the vertices. Thus, the dihedral angle A4 is the angle between
the planes A0B and AOC. If we think of the angle as the angle of rotation of
one plane into the other, then the axis of rotation is A. The complete description
of the spherical triangle in terms of arc lengths and dihedral angles is shown
in Fig. 2.

FIG. 2. A Spherical Triangle.
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To represent the three vertices of the triangie anaiytically, let us choose the
z-axis to coincide with A, and let B lie in the xz-plane. Then

A=1%, (1a)
B =coscz + sincxk, (1b)
C =cos bz + sin b cos A% + sin b sin Ay, (lc)
Thus,
cosa=B-C =cosbcosc+sinbsinccos 4. (2a)

Likewise. by cyclic permutation of the vertices

cos b =cosccosa + sinc¢sinacos B, (2b)

cosc =cosacos b + sinasinbcos C. (2¢)

obtained by choosing Z and x appropriately in each case. It follows also that

(Axﬁ)-é=sinAsinbsinc. (3)
From the cyclic invariance of the scalar triple product.
(AXB)-C=BxC)-A=(CxAa): B, (4)
it follows that
sin 4 sin bsinc = sin Bsincsina =sinCsinasinb. (5)

Dividing all three members by sin a sin b sin ¢ leads to

sinA _sinB _sinC
sina sinb sinc’

(6)

Equations (2) are the spherical law of cosines for sides and equation (6) is the
spherical law of sines. There are additional usetul and important resuits which we
will obtain in conjunction with the Euler angles.

The Euler Angles

Any rotation matrix may be parameterized in terms of a symmetric sequence of
Euler angles [1-3], which we write in the form

Rimi(e, 3. ¢) = R(id;, p)R(ii.n, D)R(il/, @), (N

where 0, and i, are two distinct unit column vectors which are chosen from the set

1 0 0
u, =10{, a;={1], and 4.=1}0]. (8)
0 0 1

Thus.
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1 0 0 @ 0 —s0
R@,,0) =10 8 56|, R(@,,8) =10 1 0 |, (9ab)
0 —s6 cf s6 0 o
c@ s 0
R(G;,0) =] —s6 c8 0], (9c)
0 0 1

where 8 = cos ¢ and sf = sin §. The three angies. ¢, 9, ¢, are usually restricted
to the intervals

0=<¢ <2m O0=d9=x and 0=y <2mw. (10)

We call the sequence of Euler angles appearing in the parameterization of the
rotation matrix in equation (7) symmetric in order to distinguish it from an
asvmmetric sequence of Euler angles in which no two axis column-vectors are
identical. We particularize our discussion to the 3-1-3 sequence of Euler angies.
However. the resuits will be true for any symmetric sequence.

We note first that the multiplication of the three rotation matrices of
equation (7) leads for the 3-1-3 case to

Rsi3(p, 3, 4)
[ cos ¢y sing 0 1 0 0 cose sineg 0
=) —-sinyy cosy 0||]0 cosd® sind —sing cos¢ O (11a)
0 0 1 0 -sind cosd 0 0 1
i cfcop — sPcdse  cpsp + sPcdce  sPsd
= | —sgicp — cfcdse —sPse + cpcdcp cysd |, (11b)
L sUs —sdce cd

where sy has been written in place of sin ¢, et cetera. Four of the terms have the
appearance of the right member of the spherical law of cosines for sides. This
can be understood from the spherical-trigonometric description of the Euler rota-
tions, which we now deveiop.

Spherical-Trigonometric Depiction of the Euler Angles

Consider the action on the x-axis of a rotation described by a 3-1-3 sequence
of Euler angles (p, 3, ). Imagine that the rotations correspond to a sequence of
physicai rotations such that

R(as, @), for0=¢<1,

R(t) = Y R(@,, 3(¢ — 1))R(83, 0), for 1 =¢ <2, (12)
R(Gs,¢(t — 2))R(id,, 3)R(us,0) for2 =t =<3,

Under the first rotation, the x-axis is displaced in the y-direction by an arc

length ¢ as shown in Fig. 3. Note that we describe the displacement of the physi-
cal x-axis and not the representation.
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FIG. 3. Displacement of the x-Axis under a Rotation about the z-Axis.

The second rotation being about the x-axis does not displace the x-axis. How-
ever, it rotates the y-direction by an angle ¢, so that the further movement of the
x-axis is along another direction. The third rotation, about the new z-axis, dis-
places the x-axis again. The combined action of all three rotations on the x-axis is
depicted in Fig. 4. Thus, the two outer angles correspond to arc lengths, and the
medial angle to a dihedral angle.

Suppose now we consider a sequence of six rotations satisfving

R(@,, m — B)R(s, O)R(@,, m — A)R(fs, b)R(G,, m — C)R(fir,a) = 1. (13)

Because the complete sequence of rotations must be equivalent to the identity ro-
tation (we will call such a sequence closed), it follows that the locus of any point
on the unit sphere under this sequence of rotations, when the sequence of six ro-
tations is written in a manner similar to equation (12), must be a closed curve.
From the above discussion, the locus of the x-axis will be the spherical triangle
shown in Fig. 2.

We can now understand the similarity of the expressions for the (1, 1), (1,2),
(2,1), and (2,2) elements of the direction-cosine matrix to the spherical law
of cosines. Let us denote the original axes of the coordinate system by (1,], k}
and the successive coordinate axes following the three Euler rotations of
equatlon (11) by {17, K}, {i" J”k”} and {i",J",k"}, respectively, with k' =k,
i” =1’, and k" = k” for a 3-1-3 set of Euler angles. Then C,, the (i, j) element
of the direction-cosine matrix, is given by

C; = cos vy,

ﬁ’”
A4
n-06
g ¥, &

¢

FIG. 4. Locus of the x-Axis in Response to a 3—-1-3 Euler Sequence.
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FIG. 5. The Sphericai Trigonometric Representation of the Rotation Matrix for the 3-1-3 Set
of Euler Angles.

with the arc length v, given by the appropriate arc of Fig. 5. Applying the spheri-
cal law of cosines to the appropriate triangles of Fig. 5 leads immediately to the
desired expressions for the elements of the direction-cosine matrix in terms of
the Euler angles. Note that the arc fengths in the figures are not drawn to scale.
This is particularly true for the arcs of length 7/2 and 371/2. Note also that the
spherical triangle for computing vy is completely degenerate. The spherical trian-
gles for the 3-1-3 set of Euler angles are equally simple and are shown in Fig. 6
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FIG. 6. The Sphericai Trigonometric Representation of the Rotation Matrix for the 3-1-2 Set
of Euler Angies.

One should compare the ease of computation of these expressions for the di-
rection-cosine matrix with that from the Piograms [4]. The caiculation of the
spherical law of cosines may be said to be simpler than that of the Piograms.
However, the construction of the appropriate spherical triangle generally takes a
great deal more thought than the construction of the Piogram, which is fairly au-
tomatic. In addition. sphericai trigonometry is much more difficult to apply to
more than three rotations, which pose no particular probiem for the Piograms.
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Polar Compiement Theorem

Examine now the effect of the 3-1-3 sequence of Euler angles on the z-axis.
The resuit must again be a spherical triangie, since only the three rotations about
the x-axis cause a displacement of Z. However, now the arc lengths and the di-
hedral angles are reversed leading to the spherical triangle shown in Fig. 7.
(The locus of the y-axis under this sequence of six rotations is an irregular right
sphericai hexagon and is of little obvious practical interest.)

The sphericai triangle of Fig. 7 is calied the polar complement of the spherical
triangle of Fig. 2. The existence of the spherical triangie of Fig. 7, given the
spherical triangle of Fig. 2, is known as the Polar Compiement Theorem.

If we apply the law of cosines for sides to the complementary triangle we obtain

cos A = —cos Bcos C + sin BsinC cosa. (14a)
cos 3= —cos Ccos A+ sinCsin A cos b. (14b)
cos C = —cos Acos B + sin A sin B cos ¢, {14c)

which is the spherical law of cosines for angles of the originai :rherical triangle
of Fig. 2.

Thus, the Euler angles provide the vehicie for a very simpie derivation of the
Polar Complement Theorem and the Law of Cosines for Angles.

Composition of the Euler Angles

Suppose we are given two successive rotations, the first described by a 3-1-3
sequence of Euler angles (¢, 31, ¥:), and the second described by a 3-1-3 se-
quence of Euler angles (¢3, %, ¥2). What is the 3-1-3 sequence of Euler angles
(¢, 9, ¢) of the combined rotation as given by

Ryns(e, 3, ¢) = Rus(@2, B2, ¥2)Ras(e1,01,44)? (15)

x—-A

FIG. 7. Locus of the z-Axis in Response to a Closed 1-3-1-3-1-3 Euler Sequence.
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Expanding each of the rotations and rearranging terms leads to
R(ﬁh _02)R(ﬁ37¢ - ¢2)R(ﬁl»0)R(ﬁ37<P - (Pl)R(ﬁlv _01)
X R(ﬁ), "l,ll] - (Pz) = [ (16)

Thus, the nine Euler angies satisfy the two spherical triangies of Fig. 8. Of these
two figures. the first gives the locus of the z-axis and the second the locus of the
x-axis. We see immediately from the diagrams that singularities in the expres-
sions must occur when any of the arc lengths or dihedral angles are 0 (or, equiva-
lently, 27) or & Thus, while the computation of the Euler angles from the
direction-cosine matrices is singular only for extreme values of the media angle
9, the analytical behavior of the composition rule for Euler angles is clearly much
more diseased, displaying a singularity at the critical value of any of the three
media angies.

To compute an analyvtical form tor the composition ruie we note that the law ot
sines applied to Fig. 8 vields

sinfe — @) _ sin(y — dra) _ sin(—@> — )

- - , 17
sin(r + %)  sin(m + %) sin(r — ) (17
which may be solved to yield
. sind; .
sin(@ = @1) = ——=sin(ez + ¢1), (18a)
in(w — v2) = 222 Gines + ¥n) (18b)
sin U Sn o ¥2 t+ ¢n).

Likewise, applying the law of cosines for sides to the sides of Fig. 8a (or, equiva-
lently, to the vertices of Fig. 8b) yields

cos 9 = cos ¥, cos ¥, + sin 3, sin %, cos(wm + ¢ + ¢3), (19a)
cos(—1h) = cos ¥ cos(—1;) + sin 9 sin(—3,) cos(w — & + ), (19b)
cos(—1,) = cos & cos(—3) + sin & sin(—3y) cos(w — ¢ + @), (19¢)

a. Locus of the z-Axis. b. Locus of the x-Axis.

FIG. 8. Sphericai Triangies for the composition of 3-1-3 Euler Sequences.
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which may be solved to vield

cos & — cos ¥ cos 3

coste = 1) = sin 9 sin &, ’ (202)
cos &, — cos ¥ cos 3 .,
cos(y = y) = sin @ sin &, ’ (-Ub)

Combining these results leads finally to
¢ = arccos(cos &, cos ¥, — sin &, sin & cos(g: + Y1), (21a)
@ = @, + arctan,(sin & sin &, sin{e¢, + ), cos %, — cos ¥ cos &), (21b)

¢ = W, + arctan»(sin 3, sin &, sin(e2 + ), cos & — cos ¥ cos th), (21¢)
Similar results for a slightlv restricted case were reported previousiv by Lind-
berg {3].

The above resuits can also be obtained anaivticallv from the examinauon of
the equations

Rusle — @i, 1y — 1) = Ri(Dh, 02 + ¥, 81), (22a)
Ris(—¢ + ¢\, 0, @2 + ) = Riu(d ¢ — o2, =), (22b)
Rus(er + U, 02, = + ) = Ri(—th, @ — @1, 1), (22¢0)

Calculating the (3, 3), (3.1), and (1, 3) elements of equation (22a), the (3, 3) and
(1,3) elements of equation (22b) and the (3, 1) element of equation (22¢) will.
with some manipulation, furnish the above results. The singularity conditions,
however, so clear from the spherical triangles, are difficuit to extract from the
equations.

A similarly simple result does not hold, apparently, for the asymmetric se-
quences of Euler angles (for example. the 3-1-2 sequence). For this case. the
simplest loci for the composition problem correspond to spherical quadrilaterals
as shown in Fig. 9.

FIG. 9. Composition of the 3-1-2 Euler Angles.
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From Fig. 9 we see that infinitesimal 3—1-2 Euler angles must simply add. The
area of the spherical triangle in this case is obviousiv a function which is at ieast
second order in the six initial Euler angles. Since the area of a spherical triangie
is equal to the angular excess (in radians for a unit sphere), it follows for the
spherical quadrilateral that

4
> (dihedral angle), = 27 + Area. (23)
1=
Substituting the values of the four dihedral angies yields, therefore,
= ¢, + th + O(angies’). 24

Since all four dihedral angies are close to m/2, it foliows that the spherical
quadrilaterali is close to rectangular. Hence. opposite sides wiii be equal to second
order in the angles, from which we have immediately

© =@, + @1 + O(angies), and ¢ = ¥, + ¥, + O(angles™).  (25)
Transformation of Angles

Spherical trigonometry also provides us with an easy means of connecting the
3-1-3 and 3-1-2 sequences of the Euler angies, which must satisfy

Ran(eas, B, ¥a13) = Raa(@anz, Fn, ¥n2) (26)

By transposing one member to obtain a sequence of rotations whose combined
effect is the identity, we obtain the sphericai triangle of Fig. 10. Solution of this
right sphericai triangie by Napier’s ruies {6] leads directly to the relations

P13 = arccos(cos Pi1; COS Wr2), (27a)
@33 = @312 + arctan,( —sin ;2 oS Yz, Sin ), (27b)
Y33 = arctan,(—cos dyz2 Sin Ysa, sin ), (27¢)

D52 ~ Pss
F1G. 10. Connection of the 3-1-3 to the 3-1-2 Euler Angies.
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and
12 = arcsin(sin d113 cOS Y1), (28a)
@n2 = @3 + arctan(sin 3, cos dy; cos Yas), (28b)
Y312 = arctan,(—sin P33 sin Yi13, cos F3), (28¢)

Similar relations can be derived for the connection to the 2-1-3 sequence. Note
that Fig. 10 leads to a very unpleasant looking spherical triangle for @32, 12,
Y12 small, a consequence of the singular nature of the 3-1-3 Euler angles for in-
finitesimal rotations.

Conclusions

The Euler angles provide us with a mechanical understanding of the Polar
Complement Theorem and a simple derivation of the spherical law of cosines for
angles. Likewise, spherical trigonometry provides us with a simple and direct ai-
gorithm for combining two rotations described in terms of symmetric sequences
of Euler angles. These resuits. which do not seem to be known generally, are sat-
isfied by any symmetric set of Euler angies. Of more practical importance is that
the spherical trigonometricai relations provide a much readier picture of the sin-
gularities involved in combining Euler angie sequences than would be obtained
from a cursory inspection of the equations. Figure 8 and equations (21)—(25), the
most important new results of this work, hold for any of the six symmetric Euler
angle sequences. We feel that the spherical trigonometric approach provides the
most efficient and elegant path to equation (21). Alternate expressions to those
developed here have been presented in earlier works {7, 8].
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