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A Simple Kalman Filter and Smoother
for Spacecraft Attitude

Malcolm D. Shuster*

Abstract

The QUEST solution to the Wahba problem, which previously has been recast as a2 maximum
likelihood estimation problem for the attitude, is now reformulated as a Kalman filter. The re-
sulting “filter QUEST™ turns out to have several advantages over the usual Kalman filter
mechanization for spacecraft attitude. Firstly, it deals with the whole attitude rather than with
incremental corrections. Thus, questionable subtractions need not be made, and convergence
of “filter QUEST" is immediate. Secondly, for cases where the effect of process noise contri-
butions can be represented adequately by a limited memory filter, the resulting algorithm is ex-
remely efficient. When the attitude covariance matrix is output with smailer frequency than
that of the measurements, “filter QUEST™ becomes proportionately more cfficient than the cor-
responding usual implementation of the Kalman filter. Numerical examples are presented.

Introduction

In a previous paper [1], the statistical properties were studied of the least-squares
attitude matrix. A *, which minimizes Wahba’s cost function (2],

l d A~ -~
La) = = X a,|W, = aVf, ¢y
k= |
where W,,. k= lx' ..,n, is a set of unit vector observations in the spacecraft-fixed
reference frame, V,, k = 1,...,n, are the representations of the same unit vectors

with respect to the primary reference frame (the frame to which the attitude is re-
ferred), and the g, are a set of positive weights. It was shown there that the ieast-
squares attitude matrix, A *, was also the maximum-likelihood estimate of the attitude
given the measurements W,, for the measurement model

W, = ¥, + AW,, @
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where the sensor error. AVAV,(. is approximately Gaussian and satisfies to lowest order
E{AW,} = 0, (3)
E{AW, AWD} = oilf — (AV) (AV)]. (4)

This approximate but realistic model for the mean and covariance matrix of the atti-
tude sensor error has been used frequently in the past. In fact, it was the basis for the
covariance analyses of the QUEST algorithm {3], a very efficient impiementation of
the solution to the Wahba problem which has been employed in the support of several
spacecraft. References to the earlier work on the Wahba problem are contained in {1].

This resuit has important consequences. Firstly, knowing that the Wahba attitude is
a maximum likelihood estimate gives us greater insight into its statistical properties.
Secondly, since the Kalman filter is a sequential mechanization of the maximum
likelihood estimate for linear Gaussian systems {4], it follows that a sequentiaiization
of the QUEST algorithm must be equivalent to the Kaiman filter for the measurement
model above. It is the elaboration of a QUEST mechanization of a Kaiman filter -and
smoother for the attitude. which is the subject of this paper.

The second important result in {1] was that the Fisher information matrix, Fy,,
which asymptotically is equal to the inverse of the estimate-error covariance matrix,
Py, could be calculated directly from the maximum likelihood estimate of the attitude
and attitude profile matrix, defined according to

B="SaWVl. (5)
k=)
The relation is
Fp = P, = tr(A*B)] — A*B, (6)

where tr(-) denotes the trace function. This could be solved for B to yield
1
B = [E- tr(Po )l — P;,']A*. N

In either form B is an exacr representation of the maximum-likelihood attitude and an
approximate representation (good to lowest order in o) of the attitude covariance.
Thus, the possibility exists of mechanizing a Kalman filter for the attitude in terms of
B, which is what we intend to do.

We begin by discussing early attempts to accommodate noisy systems in the Wahba
problem within a batch framework. We then develop a filter implementation of the
QUEST algorithm for deterministic static systems subject to noisy measurements and
extend it to take approximate account of process noise as a fading-memory filter. We
then compare the performance of the fading-memory filter, dubbed “filter QUEST”
with the correctly modeied Kalman filter. The agreement turns out to be generaily
good. Finally, the “filter QUEST"™ algorithm is extended as a Rauch-Tung-Striebel
smoother {4].

Early Applications of the Wahba Problem to Dynamical Systems

We are used to thinking of the Kaiman filter as a mechanization of the maximum
likelihood estimate for measurements which constitute a time series. For the Wahba
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probiem. the measurements are ail simuitaneous. Hence, a Kalman filter mechaniza-
tion of the least-square attitude defined above can correspond only to a static system.
The Wahba cost function has been applied to dynamical systems. however. most no-
tably the support of the HEAO spacecraft [S]. In this application the spacecraft was
equipped with three-axis strap-down gyros, which. if we neglect gyro noise, made
possible the computation of the relative attitude ®, from time ¢, to time ¢,,,,

Ay = DA, (8)

Using these relative attitudes the measurements at time 7, were transformed to the
spacecraft body frame at time ¢,, the loss function of equation (1) was minimized to
find the best estimate of the attitude at time 7,, and the relative attitudes then used
again to transform A, back to A,. The gyro biases were assumed to be very-siowly
varying and estimates of the gyro biases were updated from time to time in a manner
independent of the attitude computation, essentially by minimizing the spread of the
attitudes which were mapped back to ¢,.

This approach has certain disadvantages. Since the gyro biases are changing due to
the accumuiation of white noise and higher-order Markov processes. the contribution
to A(1,) should not be as great from very late as from very early measurements. A
diminution of the effect of later data can be accomplished by down-weighting the
data, say by multiplying the weights a, by a factor

1
k== T 9

g + wit, — 1,)°
where o, is the sensor error level and w characterizes the gyro noise. assumed here to
be Gaussian and white. Such down-weighting can be expected to be heuristic at best
since until recently the Wahba problem was not analyzed in its proper statistical setting.
Down-weighting of the data does not make this procedure totally satisfying either,
since down-weighting which is appropriate for A(z,) will not be appropriate for A(z,)
with & different from zero.

A second unpieasanmess of this approach is that one must continuaily augment the
size of the batch to obtain estimates for later times than were contained within the
original batch or wait until a new batch is accumulated. Thus, this approach does not
permit the attitude to be computed on-iine with much ease.

Finally, all these enhancements are only heuristic at best. For one to have confi-
dence in a statistical estimate, one must have confidence in the statistical foundations
of that estimate. Simply making intuitively satisfying doctorings of an aigorithm 1is
not sufficient.

A Filter Solution to the Wahba Problem

As a first step to constructing a filter solution to the Wahba problem for a deter-
ministic dynamical system we consider the sequentialization of the Wahba problem as
given by equation (1). Let A denote the estimate based on the first kK measurements.
This quantity and its estimate error covariance are determined completely by the atti-
tude profile matrix

B, =S aWVT. (10)
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Earlier implementations of the Wahba probiem set

k
Sa =1. (11)
I=1

It was shown earlier 1], however, that L(A) becomes the data-dependent part of the

negative-log-likelihood function for the measurements described by equations (2)
through (4) provided we choose instead

(12)

Q|;—-
~n

a, =
With this choice B, satisfies
l A A
B, =B, + sW,V]. (13)
Ty

Since B, is an exact representation of the maximum-likelihood estimate of the attitude
{1], it follows that equation (13) is a mechanization of the Kalman filter for the mea-
surement described by equations (2) through (4) and a static dynamical system, for
which A, is constant. Since B, is a representation of both the attitude estimate and the
estimate error covariance, equation (13) represents both the estimate update equation
and the update equation for the covariance simulation of the filter.

This result may be extended to deterministic dynamical systems described by

%A(t) = [a()]AQ), (14)

where [w] denotes the antisymmetric matrix defined as
0 o -w
[wl=}-ws, 0 w |. (15)
W, —wy 0
For the system to be deterministic, w(t) must be known exactly. In this case.

A (= A(1,)) satisfies equation (8), with known ®,.
If we define now W, (¢) according to

d A A
7 Vi) = fa()IW. (1), (16)
with the boundary condition
W) = W,, an

where VAV,, is the measurement which takes place at time ¢,, then W,(t) is simply the
representation of the k-th measurement in the body frame at time z. Thus,

Wl(’lm) = q’kw:(’k) . (18)
The attitude profile matrix at time ¢, taking account of all measurements up to and in-

cluding time ¢, is, therefore,

&
1 A A
B, = 2 =P P, .- DWW, VT, (19)
=1

g,
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which satisfies the recursion relation

l A A
By=® By + 'o_'iwkv[- (20)

k

Greater similarity to the usual Kalman filter equations may be obtained by defining

A

By- = B(1,) given W,, e W

el .
= E—Zwl(tk)vlrs @2n
=1 T

A

By, = B(t,) given W,,... W,

k
l A A
= 2 =W )V]. (22)
(=) Yy
Then the “filter QUEST” implementation of the maximum likelihood estimator given

the measurements described by equations (2) through (4) and the deterministic dy-
namics given by equation (8) is

Byje-r = ®ecy Bimy i » (23)
1 A A
Byr = Bipey + S Wi VT, (249)
T

which are the prediction and update equations, respectively.

If an a priori maximum likelihood estimate of the attitude, A|,, and corresponding
estimate error covariance matrix, P,,, is available, then following equation (7), the
attitude profile matrix may be initialized according to

1 - -
B"lo = [7 u'(P‘,'Io)I - Pollo]A:lo » (25)
or. if an a priori estimate is not available, by

Bolo =0. (26)

Thus. for this deterministic system (subject to noisy measurements) equations (23)
through (26) provide a complete mechanization of the Kalman filter in terms of the
attitude profile matrix B,. At any time the estimated attitude matrix and covariance
matrix may be extracted using the QUEST algorithm (1,3]. This method has the dis-
advantage that one must do further work to compute the attitude matrix or quaternion
and the covariance matrix from B,. On the other hand it has certain advantages as
well. First, “filter QUEST™ deals with the whole attitude rather than with a differen-
tial correction and is, therefore, free of dubious subtractions, which usually lead to
useless estimates until the filter converges. Secondly, the filter is exact and does not
suffer from errors like those introduced into the extended Kalman filter by the lin-
earization. Thirdly, since “filter QUEST” is closer to being an information filter than
a covariance filter, it can treat prior-free estimates without the need to concoct not-
quite-infinite initial covariance matrices, which add to the initial modeling errors and
worsen the filter convergence. Fourthly, if the measurement frequency is much greater
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than the frequency with which attitude need be computed. then the method is very ef-
ficient since the number of steps needed for “filter QUEST” is smaller than that
needed for the more usual Kaiman filter computation of the attitude {6].

To see the nature of this efficiency in more quantitative terms. we will compare
equations (23) through (26) with the equivalent Kaiman filter equations. Thus, the
corresponding prediction equation is paralleled by the two equations

Afoiu = DAL, P = q)kpklkq):{» (27)

invoiving 81 flops* (or only 72 if we use the fact that P is svmmetric) as opposed to
only 27 flops for equation (23). ‘

The implementation of the update for the equivalent Kalman filter is more complex.
To represent the update correction to the attitude, we write

A, =elbday, (28)
where §, is expected to be small and
Efu-1 = 0. (29
Then. the measurement equation may be written to first order in & as
W, = Af V= [Af- VIE + ve, (30)

where v, is the measurement noise which, to all practical purposes, is Gaussian,
white, and has covariance matrix given by equation (4) with AV,, replaced by
Al Ve

Although the measurement is singular, the information matrix associated with the
measurement is readily evaluated and is given by

Ry = Ul:[l - W W] 1)
The notation is not meant to suggest that R, has an inverse. We have defined
Woier = Ak V. (32)
Then, in terms of these quantities the Kalman filter equations become
Pai = Pyi-) + R, (33)
& = }l—ip,..uv‘vk,,_,nw,. (34)

The computation of the filter update has been simplified considerably by recombining

some of the matrices and carrying out some of the matrix multiplications explicitly.

Also the filter has been cast as an information filter rather than as a covariance filter

in order to make the comparison with “filter QUEST" as unbiased as possible.
Given £\, one must now update the attitude according to

2
9 = l:fuk/ ] ®7 qi-1» (35)

where the indicated operation is quaternion composition, and it is understood that the
quaternion must be renormalized after the update. Note that estimates have been indi-

*1 flop (= floating-point operation) is the equivalent to one floating-point multiplication or one floating-
potnt division.
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cated throughout by an asterisk rather than the more usual caret to avoid confusion
with the caret designation of a unit vector.

This is the simplest impiementation of the traditional Kalman filter update for the
given measurement type. Equations (31) through (35) require 88 flops as opposed to
only 12 flops for equation (24). The computation of the quaternion from B, using
the QUEST algorithm requires an additional 16 flops (7], and the calculation of the
covariance matrix from B,, using the resuits of [1] requires an additional 45 flops.
Thus, “filter QUEST™ requires 39 flops if the quaternion and covariance matrix are
not to be output and 100 flops otherwise. This should be compared with 169 flops for
the more traditional Kalman filter. If the attitude covariance matrix need not be output
at every update, the computational savings are substantiai.

Inclusion of Process Noise in the Wahba Problem

The Wahba problem, by its formulation, does not allow easily for the inclusion of
process noise. Equations (6) and (7) provide the means for computing a covariance
matrix from the updated attitude profile matrix. adding a process noise covariance.
and computing a new attitude profile matrix. Thus. process noise can be included into
the QUEST algorithm exactly. Such a method would be extremely costiy, however.
and eliminate any computational gains obtained by impiementing QUEST in place of
the more traditional Kalman filter.

An alternative to working explicitly with a process noise covariance matrix is to
approximate the degradation of the estimate due to process noise by a fading memory
approximation {8]. Thus, in predicting the system from time ¢, to time ¢,,,, the Fisher
information matrix is muitiplied by a factor @ where 0 =< a = 1. Such an approach is
approximate. to be sure, but uniess one is specifically trying to identify error pro-
cesses in the system, this approximation leads to an algorithm which is of obvious
utility. The fading memory approximation has the advantage also that it makes the
filter robust. With this approximation, the filter QUEST formulation takes the form

Initializarion
1
B,, = [—2- (P ) — P;,',]A:., or 0. (36)
Prediction
Bk+|lk = a(b,,B,,“. (37)
Update
1 ~ ~
By = Byjpy T W, V. (38)
Ty

For & = 1, we recover the usual QUEST algorithm. For « = 0, only the current
measurements contribute to the estimate. Note that equation (37) assumes that the
measurements are uniformiy separated in time. When this is not the case. a more
generai form of the forgetfulness factor would be

s = expl=y(t, — 1)}, ¥ =0, (39)

if the measurements are not evenly spaced in time. The traditional Kalman filter
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equations remain the same except that the covariance prediction becomes
- T
Py = « |¢kPk|k¢k' (40)

The problem now becomes the choice of a. Since the maximum likelthood estimate is
also the minimum variance estimate for linear Gaussian systems. a logical choice for
a is the value which minimizes the steady-state updated covariance of the QUEST fii-
ter, i.e., the limit of the updated covariance as the time becomes infinite. This will
yield the best possible steady-state estimate. Since spacecraft typically have more than
one sensor, this limit is not unique. Thus, we must specify which sensor update is
meant. Also, it assumes that as k — o, g, for each sensor tends to a constant. In the
examples we will study, we will assume that o, is independent of time.

Numerical Examples

In the absence of process noise the QUEST algorithm and the Kaiman filter must
yield identical results, since they both minimize the same function of the data. To test
the performance of the filter QUEST algorithm in the presence of process noise the
following stochastic model has been chosen

1
200 = w) + S 1w100) + W), @D
where (1) is the rotation vector, which is related to the attitude matrix by
A = cos|Of + “—'Igl-‘z’si’ﬂoof + %‘"i{ol, 42)

and which is assumed to be very small, so that higher order terms in @(¢) couid be
dropped from equation (41). The random variable w(¢) is taken to be a continuous
white Gaussian process with constant power spectral density Q proportional to the
identity matrix. The term w(r) in this model is the gyro noise, which in the dynamics
replacement approximation {6} becomes state process noise. In the actual numerical
example, w(r) has been chosen to vanish identically since the values of w(r) do not
affect the performance of either QUEST or the Kaiman filter. Thus. the effective dis-
crete process is

6e) = 6, + w,, (43)

where w, is a discrete white Gaussian process with process noise covariance Q,,
where for small uniform sample times At

O, =QAt=gqgl. (44)
Two cases were considered for the measurements:

(a) Three simuitaneous sightings in each frame of data, which we assume for
simplicity to be along each of the three body coordinate axes, each having the
same measurcment covariance parameter .

(b) Two simuitaneous sightings in each frame of data along the body x- and y-axes,
each having the same measurement covariance parameter . This is very close
to actual mission configurations except that the angie between the two sightings
is seldom 90 degrees.
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The “filter QUEST" algorithm and the traditional Kalman filter with fading memory
will yield identical results within differences in round-off error. Therefore., we wiil
compare in this section the “filter QUEST” result with the traditionai Kalman filter
with correct modeling for the prediction step, i.e.,

Pk+l‘k = ckaHkq)I + O, (45)

As a consequence of this, it might be argued that the numerical example is a test of
the traditional Kalman filter with fading memory rather than of any specifically
QUEST-based algorithm. This, of course, does not diminish the value of knowing
how well a fading-memory filter operates within the QUEST context. We must now
choose the optimal value of a.

We may regard W, _, for / = 0 as a measurement of 6,. To show this using the fact
that 6, is very small we note

Wk—l =+ [[ak—lu)vk—l + AW,_,
= {]k—l - Hvk-luok—t + Awk—l

= vt-l - [[Vk—l]](ak W T W — o TwW ) Awk-l
= 01-: - ﬂ:vk-lnak + Awk.l-lv (46)
where
i
AW, oy = AW, = [V 12 W, é4n

As a result of the process noise all the measurements will be correlated with one
another. If the indices a and b denote the measurement axes (1, 2, and 3), k the tem-
poral index of the state vector (here, 6,), and k — { and k — /' the temporal indices
of the measurements (so that each measurement is labeled by an axis index and a
temporal index), then the covariance matrix of the measurements is

Cov{Awl.a.l-hAwk‘b.k-l'} = (o 28.:5811' + g min({,1")) Hoa.k—lﬂllvb.k-l'nrv 48)

where min(i, j) denotes the minimum of i and j. The triple index should be clear. The
indices a and / label the measurement (/ is the number of time intervals prior to & at
which the measurement occurs) and k is the temporal label of the current frame (for
which A}, is being estimated).

To determine the best value for the forgetfulness factor a, the QUEST attitude
matrix is computed according to the prescriptions of equations (36) through (38), the
attitude error, A8, is computed, and the covariance of this attitude error is computed
using the covariance matrix of equation (48) to give the true covariance of the
QUEST attitude. The quantity « is then chosen to minimize the true covariance of the
QUEST attitude. The covariance matrix which QUEST would calculate from equa-
tion (6) need not be the same as the true covariance since equation (6) assumes that
the measurements are uncorrelated.

Example 1: Three Measurements

The information matrix for a single frame of data in this case is

1 ! 2
T o T a
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or
0_2
R, =—I=R. (50)
2
The steady-state Kalman fiiter covariances are the solutions of
P(+)"'=P(-)"' + R, P(-)=P(+)+ Q, (5DhH
where
P(+) = }im Piss P(-) = Eim Piji-y - (52)
Since R and Q are proportional to the identity matrix it follows that
P(x) = p(=), (53)
which are readily calculable to give
TF1+VI+ X
pX(=x) =g————————, (54)
2 x
where
x=c/q. (55)

For the special case considered in the present analysis. the QUEST attitude is cal-
culated most simply in terms of 6, directly. From equation (46) we have that 63"
must minimize

L) = = 2 a:;_llwk -1 vk-l + ﬂvk-lﬂakizv (56)

t=0 !

which in our example becomes

k-t 3

L(8) = = >: >: et = Vi + Vo JO (57

I=Q a=i

With this QUEST loss function 673VEST is given by

om)uasr = Py Praad m ) (58)
where
2 2 .k-lﬂ(wa.k-l - vn.k-l) ’ (59
{=Q a=|
k-1 3 I " -1
P ?HEST = (2 E z{l va.k—!v:.k-!]> (60)
{=Q a=i
l~ad’
= —, 61
1 —a 2 6D
PIEST as given by equations (60) and (61) is the covariance matrix riat QUEST

would caiculate from its own internal assumptions which do not take account of the
correlations between the measurements. To evaluate the true covanance of the
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QUEST solution we note that the true vaiue of 6, is 0. and. hence, equations (58)
through (61) vieid

1 -

1
AB;."?UEST=EI — kz za[[vaklﬂAwkakl (62)
=0 a=1
Thus.
l 2k-1 k-
P - (312 S 5 S ST
21- 1=0 I'=0 g=1| b=|
X Cov{Awk.a.l—lv AW, , o H[Voua (63)
The asymptotic covariance matrix is computed by letting ¥ — %, which yields
PIEST(+) = PRFT(+), (64)
with
sty - Tl 2o (65)
Prrue 2l1l+a xl-af’
which is a minimum for
+1—-VI1+ 2%
A = - . . (66)

Substituting (66) into (65) leads to

-1+ V1+
poustyy L ZILH VIE 2 67)

2 x

so that the true covariance of the QUEST attitude in steady-state is the same as that
for the Kaiman fiiter. This is not surprising since in the present case the covariance
prediction in the Kalman filter is tantamount to multiplication by a forgetfuiness factor.
Since the Kalman filter solution lies within the domain of possible QUEST sotutions,
it is clear that the QUEST solution with minimum variance must be the Kalman filter
solution. The asymptotic covariance matrix which QUEST would calculate based on
its internal statistical assumptions is given by equation (61) in the {imit that ¥ — oo,
which leads to

0_2

PUWET(4) = (] — a)71. (68)

in this expression leads, surprisingly, to the same result for pQM(H

Substituting a,,
as that given in equations (54) and (67).

Example 2: Two Measurements

In this case, the covariance matrix is not proportional to the identity matrix. The
steady-state covariance of the Kalman filter is

p'ff(i-) 0 0
PRF() = 0 p¥(=) 0 , (69)
)

0 0 pix
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with
3+ VT &
px) =L = z (70a)
2 x
o?Fl+ VI + X
pr(x) == : (70b)
2 x
The equivaient result for the QUEST attitude relative to the true statistics is
200
2 1 - 2 2
pusT 1y =T “ %o 2 o +=—2—1]). (71)
2\l + 0 0 1 Xl —a

Since the covariance matrix is not a multiple of the identity matrix, we choose a,,, to
be the value which minimizes the trace of the true covariance of the QUEST attitude.
The trace of the Kalman filter covariance is

~1 + 2/3VI + 4x + (1/3)VI + Zx] -

o =g PF(+) = }-o-z[
2 x

while that for QUEST relative to true statistics is

QBT = o pUBT(+) = %0'2[% : - Z + -i— 1 i’zaz]. 73)
Minimizing 3" over « leads to
aq,,=y+l_y l+2y, where y = 5x/3, (74)
and
R LA AT (75)

2 T x
The trace computed by QUEST based on its own internal statistical assumptions has
the same value as equation (75).

How different are the resuits of equations (72) and (75)? For x < 1 the errors in the
predicted steady-state attitudes will be dominated by the process noise so that for both
filter QUEST and the Kalman filter the estimates should be the same and simply the

estimate for one frame of data. The specific result on taking the limits of the two ex-
pressions above is indeed

tr*F, u&“{,—»-‘;’-oz asx— 0. (76)

As x — = both the Kalman filter and QUEST will have very long memories and it is
expected that in this case the greatest divergence between the two cases will occur.
The limiting behavior in the two cases is

- 2.716%/Vx asx— o, (77

QT _, 27463/ Vx asx—> o, (78)
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Thus, the two agree to within approximateiy one per cent. For finite x the comparison
is given in Table 1.

Since the agreement between tr** and tr%ET has been optimized, it is of interest to
ask how well the individual elements of the covariance matrices agree. P3UEST (+)
(and PQUF‘ST( +)) have the same structure as P ¥( +) as given by equation (69). From
equation (71) we have

(p)XEL(+) = o¥(clx) + dx)), (79a)
(Pz) (+)=o (—c(x) + d(x)) (79b)
with
-— 2
) m il gy =l G (80)
1 + a,, x1l- oz
Asx— 0
p¥(+), (p)EEL(+) — o, (81a)
py(+),  (p)lemn(+) — -;—c . (81b)
and as x —> ®
p',m(+) S 0'2/\/-, p'z(F(+) — .710'2/\/; (82a)

(POET (+) = 1.000%/Vx,  (p)dUI(+) — .730%/Vx. (82b)

As a typical intermediate value consider x = 1. For this value
pif(+) = .620°,  pi(+) = 3807 (83a)
(POET(+) = .620%,  (p)=I(+) = .370%, (83b)

demonstrating the overall good level of agreement.

How well does the filter QUEST algorithm compare to the Kalman filter for data
samples of finite duration? Examine the first example as a function of the time index.
Thus, we need only examine scalar quantities. The updated Kalman filter covariance
with correctly modeled process noise obeys

(Prire) ™ = (P + 7' + (GY/2)7". (84)

TABLE 1. Comparison of QUEST and Kalman Fiiter Steady-State Covariances

x /o S/ T
1 1.60 1.62
10 72 13
100 26 26

1000 .084 .085
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For QUEST the true finite sample covariance is

il - a 2 &
s = 7[1 Tt —1—-—9‘*] | €
with
1+ a*
o, = —= (86a)

R, =1 — a1 = )l = " = 2a"") + ko™ U] - a)]. (86b)

Since filter QUEST is an information filter, it is correctly initialized at ¢,. It is customary
among many researchers (and users!) of the Kalman filter to set the initial covariance
to some very large value multiple of the identity matrix and allow the filter to con-
verge to correct values even though the filtered state is well defined after the first
frame of measurements. We will not follow that practice but instead correctly initial-
ize p,, for both filter QUEST and the Kalman filter to o*/2. The comparison of the
Kalman filter variances and those of QUEST at the optimal value of « is shown in
Table 2. o has been chosen to make p,;, = 100 and ¢ has been chosen to make
x = 100, so that the time scale over which the Kalman Filter and QUEST converge
will be large.

Thus, filter QUEST and the Kalman Filter stay close even for finite data samples.

A Quest Smoother

Having developed a filter-like implementation of the QUEST algorithm, which in
the absence of process noise is identical to the Kalman filter, it is natural to ask what
form a smoother implementation of the QUEST algorithm would take. The “smoother
QUEST.” in fact. can be constructed from the “filter QUEST” by inspection.

TABLE 2. Comparison of QUEST and Kalman Filter Covariances for Finite Data Sampies

k Kalman Filter QUEST
1 100. 100.
2 50.5 50.7
3 34.4 34.7
4 26.7 27.0
5 223 227
6 19.5 19.9
7 17.7 18.1
8 16.5 16.8
9 15.6 15.9
10 i5.0 15.2
20 13.27 13.34
S0 13.17746 13.17752

100 13.17745 13.17745
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Suppose we are given measurements W,k = 1.... N. Then the smoothed attitude
profile matrix 8, at time ¢,,&k = 0,...,N, is given by

k=1
Byy = d(n q)i)Bolo

i=0
l ~ &

k=1
+ X adie,_, .. DWW VT
i=] g,

1 A A
+ = wkv{

T

ad . | A
+ 3 oML T W, (87)
imk+| ]

where the last three lines of equation (87) correspond to past, present, and future mea-
surement data. The interpretation of the various terms is straightforward. The factors
of the transition matrices transform the measurements to the body frame at time ¢, and
the factors of a*~* downgrade the data to reflect the ravages of process noise. B,,, is
given by equation (36).

Equation (87) may be rewritten as

BkIN = Bklk + Dk, k= 07' .. 7N9 (88)

where B,,, is the “filtered” attitude profile matrix, which satisfies the previous “filter”
(forward) recursion relations. equations, and is given by the first three lines of equa-
tion (87). D, is the contribution of the future measurements. which is given by the
last line of equation (82). By inspection, we see that D, satisfies a backward recur-
sion relation,

DN = 09 (89)
] A A
Dy, = aq);-ll[Dk + ?wkv:] ’ (90)
k

in complete analogy to the usual Rauch-Tung-Striebel Kalman filter/smoother {4]. The
information matrix again is given by equation (6). Since P, in the present application
is orthogonal. the inverse is given by the transpose. Thus, the set of smoothed attitude
estimates for an intervai of data is obtained with only twice the computational burden
of the calculation of the filtered estimates.

Discussion and Conclusions

The QUEST aigorithm is seen to provide a useful estimator as a batch estimator, as
a filter, and as a smoother. For two cases it has been shown to perform well even in
the presence of process noise. The use of the QUEST algorithm is rather limited,
however, since it computes only the attitude. Once other quantities are estimated as
well, the computational advantages of using QUEST largely disappear. However. in
the ground support of many near-Earth spacecraft. it is often only the attitude which is
estimated continuously. Other quantities such as sensor biases and misalignments are
often estimated “off-line” and only a few times during the mission. Thus. the batch
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version of QUEST has been very useful despite its limitations, and the “filter
QUEST™ presented here shouid also prove of value.

It may be noted that in batch mode the QUEST algorithm has proven itseif to be
very robust having been exercised more than 80,000,000 times with reai mission data.
While the algorithm has not been exercised specifically as a sequential algorithm. the
manner in which the attitude profile matrix is accumulated in batch form is identical
to the way it would be calculated as a sequential processor. The good performance of
such a batch algorithm with non-static systems has already been demonstrated in the
field [5].

Note that we have taken our implementation of QUEST in equation (57) to be one
in which the estimator is totally unaware of process noise, not only in its effect on
correlation but also of its effect on the “true” variances of the measurements. Thus, o}
is given simply by o>. We could, of course, have computed an improved o} using
equation (46). This would have led to a more realistic estimator but aiso one that is
extremely complicated to evaluate and offers no computational advantages. As it is,
the simplest choice performed quite well.

The method of choosing the optimum value for o, the forgetfulness factor. cannot,
in general, be carried out in closed form, as was the case in our two numerical exam-
ples. Thus, some good starting value is needed to calculate « iteratively, say by find-
ing the value which minimizes the true covariance of the “filter QUEST™ algorithm
by a Newton-Raphson iteration. For this a good starting value is needed. An obvious
choice is

o = TP
*wP(H) + Q)

since this is the approximate scale of the fractional decrease in the true filter information
in the limit that k — oo, For the first example, where all covariances which appear in
the filter are muitiples of the identity matrix. we expect equation (91) to give the same
result as the explicit optimization. as, in fact. it does. Interestingly enough, the agree-
ment is exact in the second example also. This exact agreement is not expected to
hold in general.

In general, equation (91) is easier to compute than «,,, . Therefore, it is well to ask
what is the effect of choosing 2 non-optimal vaiue for a. To compute this in terms of
the true covariance of “fiiter QUEST"™ can be obtained in the case of the numericai

on

examples considered above by calculating the sensitivities of the expressions to a.

However, we note that asymptotically the “hypothetical” covariance matrix computed
by the QUEST aigorithm is proportional to (1 — «a), so that near the optimal value we
expect small errors in a,, to lead to similar fractional errors in the attitude-estimate-
erTor covariance.

The level of agreement between “filter QUEST™ and the traditional Kalman fiiter is
quite high, better than to a few percent over the entire range of variables. One is
tempted to ask if a less simple system model in which the measurement-noise and
process-noise covariance matrices were very far from commuting would lead to the
same level of agreement. The answer to this question is probably in the negative, al-
though the performance of “filter QUEST” wouid probably be adequate in ali but the
most pathological cases. To this must be added the remark that. as a practical matter,
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models of process-noise covariance are usuaily very simple, essentially, the model we
have used in the examples above. Moreover, except in the journal and conference lit-
erature there has been a tendency in spacecraft attitude applications to avoid the use of
Kaiman filters altogether in favor of simpler (and usually better behaved) batch aigo-
rithms. The present offering has the very modest goal of making a very popular batch
algorithm more useful. We do not wish to break new ground here but only to make
the old ground a bit easier to work.

The benefits to be derived from studies of the Wahba problem seem to be far from
exhausted. Variations of the QUEST algorithm have been used to estimate spacecraft
sensor misalignments {9]. Recently, Markley has extended his singular-vaiue decom-
position solution of the Wahba problem [10] to the estimation of other parameters. in
particular, gyro biases [11]. A similar extension exists also for the QUEST implemen-
tation [12]. The QUEST algorithm also provides a usefui data-compressor for the tra-
ditional Kalman filter {13]. The Wahba problem, posed so inconspicuously more than
two decades ago, would appear to have a good deal of life to it yet and will probably
yield additional insights in the future.
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