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ABSTRACT

A methodology is presented for the identification of spacecraft vibrational modes based on maximum-
likelihood estimation techniques and realistic models for spacecraft sensor error sources. Special features
of the problem, which make possible a partitioned estimation scheme leading to important computational
savings, are presented.

INTRODUCTION

The identification of spacecraft attitude and attitude system parameters, even for rigid spacecraft, can
present formidable computational burdens. Therefore, in practice, statistically consistent estimation schemes
have not been employed, thereby making accuracy assessment difficult. Over the past few years, a consistent
and computationally efficient program has gradually been developed based on maximum likelihood estimation
techniques and realistic sensor error models. The principal results of that methodology are presented here
as they pertain to the identification of the vibrational modes of a non-rigid spacecraft.

The goal of a system identification scheme in the present case is to determine those unknown or poorly-
determined parameters which affect the estimation of spacecraft attitude. For the present study, these are
the characteristic frequencies of vibrational modes and their equilibria. In practice, it has not been possible
to estimate these equilibria adequately from prelaunch calibrations. Once these quantities are determined
from inflight data, the estimation of spacecraft attitude, or the orientation in space of any other part of the
spacecraft structure, becomes straightforward.

A complete presentation of this work is impossible within the scope of this short note. The present report,
therefore, will only outline the main components of the methodology for a somewhat simplified application.
The statement and derivations of more general results can be found in works cited in the references.

THE MODEL

Consider a non-rigid spacecraft equipped with three-axis gyros and n line-of-sight sensors, inertially sta-
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bilized in almost torque-free space. The non-rigid dynamics of the spacecraft, at a level of detail consistent
with the n sensors, may be represented in terms of a quaternion q̄(t) describing the spacecraft attitude and
n quaternions, q̄i(t), i = 1, . . . n, describing the alignment of the line-of-sight sensors with respect to the
spacecraft body coordinate axes. In general, the attitude motion of the sensors relative to the spacecraft
body axes, is greatly restricted. Therefore, the orientation of these n sensors may be parameterized in terms

of a three-vector of small angles [1], θθθi(t), i = 1, . . . n, measured from the nominal alignment q̄
(o)
i of these

sensors, which is assumed to be constant in time. Since the equilibrium value of the misalignments is not
known a priori , it useful to decompose θθθi(t) into two terms, the equilibrium misalignment ϑϑϑi(t), which is,
in fact, constant in time, and the dynamical portion of the misalignment ϕϕϕi(t).

If it is assumed now for simplicity that the spacecraft is inertially stabilized and at sufficiently high altitude
that persistent external torques are small compared to random disturbances, then the coupling of the small
spacecraft center-of-mass motion to that of the sensor may be neglected and the equations of motion of the
sensors can be written as

ϑ̇ϑϑi(t) = 0 , ϕ̇ϕϕi(t) = ωωωi(t) , ω̇ωωi(t) =
n
∑

j=1

Kij ϕϕϕj(t) i = 1, . . . , n, (1)

where the Kij are constant matrices, which depend upon the inertial and elastic properties of the spacecraft.
The equations of motion of the spacecraft attitude are given by

˙̄q(t) =
1

2
Ω(ωωω(t)) q̄(t) , ω̇ωω(t) = g(t) + ηηη(t), (2)

where g(t) is the output of the three-axis gyros, taken to be quasi-continuous, and ηηη(t) is the gyro noise,
whose particular random properties will not be important in the present work. In general, gyro noise is
smaller than random dynamical disturbances, hence the use of three-axis gyros in a dynamical replacement
mode [2] eliminates the need to model the attitude dynamics of the spacecraft. Thus, nominally the state
will consist of the spacecraft attitude quaternion, n misalignment vectors, and n angular velocities, and
whatever additional state variables are necessary to model the dynamics of the gyro random processes.

In addition to gyro readings, the spacecraft attitude determination system performs measurements at
intervals ∆t, of the lines of sight of n celestial objects. In general these are the directions of stars, the Sun,
the Earth, or the geomagnetic field. For the present model these measurements are taken to be the measured
direction expressed as a unit vector Ui(tk) in the sensor frame and related to the known direction Vi(tk) in
the inertial frame according to

Ui(tk) = AT(q̄i(tk))A(q̄(tk))Vi(tk) + ∆Ui(tk) i = 1, . . . n, (3)

where A(·) gives the dependence of the spacecraft attitude matrix on the attitude quaternion or the equivalent
dependence of the sensor alignment matrix on the sensor alignment quaternion. The random measurement
noise, ∆Ui(tk) is assumed to be zero mean and have a covariance matrix given by [3]

E{∆Ui(tk)∆U
T
j (tk)} = σ2i δij [I3×3 −Ui(tk)U

T
j (tk)]. (4)

The line-of-sight measurements depend explicitly on the spacecraft attitude.

PARTITIONING INTO CENTER-OF-MASS AND RELATIVE MOTION

The dependence of the measurements on both the spacecraft attitude and the alignments of the sensors
relative to the spacecraft leads to a coupling of these dynamical variables. In addition, the gyro error sources
are correlated in time, which further increases the computational burden, requiring a Kalman filter of very
high dimension. A solution to this problem is to represent the sensor data in terms of pseudo-measurements
which are independent of the spacecraft attitude. If there are n line-of-sight sensors, then these provide 2n
equivalent scalar measurements. Three linear combinations of these measurements, effectively, are used to
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determine the attitude leaving 2n−3 equivalent measurements which can depend on the sensor misalignments
alone. The pseudo-measurement proposed here is

zij(tk) ≡W(o)
i (tk) ·W(o)

j (tk)−Vi(tk) ·Vj(tk), (5)

where W(o)
i (tk) = A(q̄

(o)
i )Ui(tk) is the estimated observation in spacecraft body coordinates. It is a simple

matter to show that

zij(tk) = (W(o)
i (tk)×W(o)

j (tk)) · (θθθi(tk)− θθθj(tk)) + ηij(tk), (6)

where ηij(tk) is zero mean and has nonvanishing covariances given by

E{η2ij(tk)} = (σ2i + σ2j ) |W
(o)
i (tk)×W(o)

j (tk)|2 , (7)

E{ηij(tk) ηi`(tk)} = σ2i (W
(o)
i (tk)×W(o)

j (tk)) · (W(o)
i (tk)×W(o)

` (tk)) , j 6= `. (8)

For n sensors there are n(n+1)/2 pseudo-measurements zij , of which no more than 2n−3 are statistically
independent. Thus, the pseudo-measurements are redundant for n > 3. However, if the n unit vectors

W(o)
i (tk) at tk are not pairwise parallel, then one can show that the set of pseudo-measurements z1j , j =

2, . . . , n and z2j , j = 3, . . . , n form a maximal statistically independent set. Otherwise, a singular value
decomposition or a square-root information filter [4] must be employed to obtain a statistically meaningful
set of pseudo-measurements.

ESTIMATION OF VIBRATIONAL PARAMETERS

Having now delineated a set of pseudo-measurements which are statistically independent and decoupled
from the center of mass motion, it is now possible to apply maximum likelihood methods [5] to estimate the
parameters. Let Zk denote the (2n − 3)-dimensional stacked vector of effective measurements at time tk,
with measurement error vector denoted by vk. The measurement noise vector, vk, is a discrete zero-mean
white Gaussian process whose covariance is formed from the covariances of equs. (7) and (8). These now
become imputs to a Kalman filter [6], whose state vector may be written as

x(t) ≡ [ϑϑϑT1 (t), . . . ,ϑϑϑ
T
n (t), ϕϕϕ

T
1 (t), . . . ,ϕϕϕ

T
n (t), ωωω

T
1 (t), . . . ,ωωω

T
n (t)]

T (9)

and whose state equations are given by equs. (1). The measurement equation becomes

Zk = Hk xk + vk, (10)

where Hk is the sensitivity matrix of Zk to xk, which may be constructed from equ. (6).

Let ααα be the parameter vector, consisting of the values of ϑϑϑ(0) and the time constants which characterize
the Kij . Then both Zk and xk in equ. (1) above depend on ααα, as does the transition matrix Φk (through
Kij)

xk+1(ααα) = Φk(ααα)xk(ααα). (11)

Equations (10) and (11) are the basis for a Kalman filter, as part of whose mechanization we calculate the
innovation νννk(ααα) and innovation covariance Bk(ααα) [6], which depend on α through the filter equations. The
negative-log-likelihood function [5] J, is readily computable in terms of these two quantities as

J =
1

2

N
∑

k=1

{

νννk(ααα)
T
Bk(ααα)

−1
νννk(ααα) + log detBk(ααα) + (2n− 3) log 2π

}

. (12)

The value of ααα which minimizes J is by definition the maximum-likelihood estimate α̂ααML. Provided that J
has an isolated minimum, then α̂ααML can be found by solving the equations [5]

∂J

∂αm
=

N
∑

k=1

{

∂νννk(ααα)

∂αm

T

Bk(ααα)νννk(ααα)−
1

2
νννk(ααα)

T
B−1k (ααα)

∂Bk(ααα)

∂αm
B−1k (ααα)νννk(ααα) +

1

2
tr

[

B−1k (ααα)
∂Bk(ααα)

∂αm

]

}

= 0, (13)
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which may be solved for ααα using the Newton-Raphson method. The derivatives of νννk(ααα) and Bk(ααα) are
computed by differentiating the Kalman filter equations with respect to ααα. Asymptotically, the Kalman
filter furnishes the estimate error covariance for ααα as the inverse of the Fisher information matrix, which is
given approximately by [7,8]

F`m =
N
∑

k=1

{

1

2
tr

[

B−1k (ααα)
∂Bk(ααα)

∂α`
B−1k (ααα)

∂Bk(ααα)

∂αm

]

+

[

∂νννk(ααα)

∂α`

T

B−1k (ααα)
∂νννk(ααα)

∂αm

]}

. (14)

DISCUSSION AND CONCLUSIONS

We have presented a formalism for computing the characteristic frequencies and equilibria for the vibra-
tional modes of a non-rigid spacecraft. This work is a generalization of the estimation of static misalignments
described in Refs. [1, 4]. A number of generalizations of this methodology are possible and have been applied
to other complex systems with good results. In particular, the state equations (1) may be augmented to
include random error sources. The computational burden entailed by this additional complication is much
greater than that of the example treated here, but further partitioning of both the state and the parameter
vector reduces this considerably.

A matter which we have gracefully overlooked is the problem of observability. Since at any measurement
time there are only 2n measurements but at least 3n + 3 components of the state vector, it is clear that
the system may not necessarily be easily observable. The observability problem cannot necessarily be solved
simply by collecting more data, because even in the rigid-body case [1] it can be shown that a common
misalignment of all the sensors cannot be distinguished from a change in the spacecraft attitude. Thus,
the estimation of the misalignments, static or dynamic, and the attitude requires that prelaunch calibration
provide a prior distribution. The usability of that prelaunch calibration may be questioned since it must
be propagated across launch, which entails further unknown error sources. The results of Ref. [1], however,
indicate that both the error levels in the prelaunch alignments and the destructive powers of launch shock
may both have been needlessly exaggerated.
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