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Abstract

A numerically well-behaved factorized methodology is de-
veloped for estimating spacecraft sensor alignments from pre-
launch and inflight data without the need to compute the
spacecraft attitude or angular velocity. Such a methodology
permits the estimation of sensor alignments (or other biases) in
a framework free of unknown dynamical variables. In actual
mission implementation such an algorithm is usually better
behaved than one which must compute sensor alignments si-
multaneously with the spacecraft attitude, say, by means of a
Kalman filter. In particular, such a methodology is less sen-
sitive to data dropouts of long duration and the derived mea-
surement used in the attitude-independent algorithm usually
makes data checking and editing of outliers much simpler than
would be the case in the filter.

Introduction

An earlier paper [1] presented a simple but approximate al-
gorithm for computing spacecraft misalignments. That work
neglected problems of redundancy among the derived measure-
ments as well as correlations. The present work removes these
limitations and presents an exact formalism within the frame-
work of maximum likelihood estimation.

As in the previous paper, the specific algorithm developed is
for vector sensors, since these are overwhelmingly the sensors
carried on a spacecraft for which inflight alignment calibration
is important. The generalization of the algorithm to other
sensors is straightforward, if a bit tedious. The previous algo-
rithim, which shares many features with the present offering,
has performed well in support of several NASA missions.

The Measurement Model and Definitions

A vector sensor measures the direction of some vector, for
example, the position of the Sun or some distant star, the
nadir, or the geomagnetic field. The measurement may be
modeled as . ) .

' Wir=AVip + AW, (1)

where W;,k is the observed vector in the spacecraft body frame
and V;,k is the known reference vector in the frame with re-
spect to which the attitude is to be determined. Aj is the
spacecraft attitude matrix and AVAVM is the measurement
noise expressed in body coordinates. Here i is the sensor index,
i=1,...,n, and k is the time index, k=1, ... ,N.
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Experience has shown [2,3] that the measurement noise,

AVAV,vY & » 1s well described by a discrete white Gaussian process
satisfying
E{AW;;} =0 , 2

E{AW,, AW?,'E,} = biir brpr 03
(I - (Ab vi,k) (Ak Vt,k)T) t3)

The actual observations take place not in the spacecraft body
frame but in a frame defined for each sensor. Thus, the actual
observation, Uj ¢ , is related to the body-referenced measure-
ment according to

Wie=SUip , (4)

where S; is the alignment matrix, which is proper orthogonal:
Thus, we may write equivalently in sensor coordinates

AU = S;F Ap V;,k + Aﬂ;,k s (5)

with
E{AU;;} =0 |, 6)

-~ ~ T
E{AU,"]: AU,‘Ikl} = 6,‘,’/ 6‘."_.1 Uf’k

(1- (57 40 9) (s7 20v0)")

m

Considerable processing of the raw spacecraft data is necessary,
of course, to compute Uj .

In general, a prelaunch estimate of S; is available based on
ground measurements. Thus, we write

Si=M; S , (8)

where S¢ is the prelaunch value of the alignment matrix and

M;, a proper orthogonal rotation for a small rotation, is the
misalignment matrix. Thus,

Mi=1+[6:]+000:) , (9)
with
0 s —b,
(0] = [—03 0 6 ] . (10)
#, =6, 0



The three angles, 61, 82, 63, we term the misalignment angles
and 0, the misalignment vector. Note that in constructing S;
from S? and 6;, Eq. (9) must be replaced by a formula which
is exactly orthogonal, say by interpreting 6; as twice the Gibbs
vector characterizing the misalignment [1]. By definition, the
prelaunch estimate of 8; is 0 and the result of the prelaunch
alignment may be rewritten

0 (-)=0+46(-) , (11)
where Af;(—) , the prelaunch alignment error, is zero mean
and

E{A8;(~) M (~)} = &; Pu(~) (12)

We assume, naturally, that Af;(—) and AW ; are statisti-
cally independent for all values of the indices. Note that we
have used an asterisk () to denote estimates in order to avoid
confusion with the caret that denotes unit vectors.

The inflight sensor measurements alone are not sufficient to
determine both the alignments and the spacecraft attitude.
This follows from the fact that Eq. (5) is invariant under the
simultaneous transformations

S —-TS; ,
Ay —TA,

(13a)
: (13b)

where T is proper orthogonal. Thus, using inflight data alone
a common (body-referenced) misalignment is indistinguishable
from an attitude error. The ambiguity is removed by the
prelaunch estimate of the misalignments, which provide the
necessary a priori condition.

The estimation of A ,k=1,...,N,and8; ,i=1,...,n
in a Kalman filter is straightforward. We wish to avoid that
approach, however, for reasons stated in the abstract. We ac-
complish this by defining attitude-independent measurements
which are sensitive only to the misalignments.

Attitude-Independent Estimation of Alignments

Let
(14)

denote the uncalibrated body-referenced measurement (based
solely on the prelaunch calibration). Then we define for i #3

Wf,k =87 ﬁi,k

zije = W Wi = Vi Vi (15)
It is simple to show to first order that
zijp = (W x W) (0 —0)) + Azije ,  (16)
where
Azjp = Wi - AW, + W, - AW, (17)
Thus, to first order
E{Aziji} =0 , (18)
E{Azu ¥} = (”- rto k)lW & X W N (199)

E{Azijx Aziep} = 0 (We x W?,k)'(wf,k X W;’k)(lg’b)

E{AzjrAztmi} =0 (19¢)
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where i, j, £, and m above denote distinct indices.

The measurements zij; , ¢ < j, cannot all be distinct. If
there are n sensors, each measuring a unit vector, then there
are only 2n equivalent independent scalar measurements, while
there are n(n — 1)/2 possible z;j; with i < j. Since three
combinations of the W,',k determine the attitude and the z;; &
are by explicit construction attitude-independent, there can
only be 2n — 3 statistically independent z;; x . Table 1 displays
these numbers.

n 2n—3 n(n-1)/2

2 1 1
3 3 3
4 5 6
5 7 10
6 9 15

Table 1
Number of Independent Attitude-Independent
Measurements Compared with Number of
Derived Measurements

Thus, for more than three sensors the derived measurements
2ij x become redundant and this redundancy grows dispropor-
tionately with the number of sensors.

To determine 2n —3 independent measurements from among
the
n{n — 1)/2 possible z;j ; we remark that

Mm—-3=(n-1)+(n-2) (20)
Thus, it is tempting to suggest that the set of measurements

7n}

is the desired set provided that W°  and W“ & are not col-
linear. That these 2n—3 measurements are mdeed statistically
independent is easily seen by arranging the noise terms as

{z1j6,5=2,...,n; 22k,5 =3,...

Azypp = W, -AW . + W3, AW,
Azjp = W3- AW, e + Wi -AW,,
Azmje =W AW, + W, - AW,

The expressions in the second and third lines are clearly in-
dependent since they contain distinct components of AW_.,,,;,
j =3,..., n, and these are independent of the expression in
the ﬁrst llne since it is independent of AW, Bi=3,...,n

(Note that for vecltor magnetometers, the sensor supplies
three equivalent scalar measurements not iwo. The additional
attitude independent measurement may be taken to be |Bi| ,
the magnitude of the measured field, which is independent of
the alignments but not of additive magnetometer biases, which
are often significant.)

Thus, if we define

Zi = (2126 2 Zinks 228002 220 p). 5 (21)

then we may write



Zy = H©+ AZi (22)

where

e=[0"7.. 617 , (23)

and AZ; is a white Gaussian sequence with covariance ma-
trix Pz (which will be discussed in greater detail in the
next section). Hi and Pz are obtained directly from Egs.
(16) through (19). The inflight estimate ©"(+) together with
Pee(+) may be obtained by solving the normal equations:

N N
Poo(=)+ Y HT P} Hi|©'(+)= Y H{ P73 Z: ,
k=1 k=1
(24)
N
Poo(+) = Pog (=) + Y_ Hi P} Hi (25)
k=1

Factorized Methodology

The above methodology suffers from two important compli-
cations. First, the set of active sensors may be different in
every frame (labeled by k) and a complicated logic may be
required to determine Wl,k and Wz,k in each frame. Also, if,
perchance, one of these two vectors is nearly collinear with one
of the remaining vectors, the measurement model may suffer
unduly from numerical errors. The present section presents a
mathematically equivalent but numerically superior algorithm
to the one just derived.

Note that
E{AW,, AW?:I:} =0l (I - (Ak Vi,k) (Ak Vi_k)T)

= (a,-’k [Ax Vi,k]) (O’i,k [ArVig ])T

(26)
Thus, we may write
AW, =oip [ Viglax (27)
where
Flg:} =0 (28)
Efek €} = 8 Iaxs (29)

Therefore, we may write to lowest order
Zijk = (wfk X W;I:) ©:; —-0;) + B:.j,kft',k +B{j,lc &k (30)
with

Bijp = (W07 (006 [W7L))

= Oik (Wz?,k X W;,k)T ) (31a)
Bl = 0je (W3 x Wip)T (31b)

Thus, we may write
Z, = H0+ Br& (32)

where €; is a discrete white Gaussian process with covariance
matrix equal to Is,x3, and, therefore,
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Py = B BY (33)
Note also from Egs. (16) and (31) that

zije = (Wi x WEL)-(0: =0 +0i 6 — ojpe5e) , (34)

so that
o1k Iaxa  Osxs Osx3
Oaxa 03,1 Iaxs O3x3
By = Hi . . . - (35)
Osxs O3x3 onk Isxa

The above formulation holds true whether Z; is chosen to
be a vector of length 2n — 3 or n(n — 1)/2. In the general
(and common) case where n is a function of k, the latter case
is easier to treat in practice. Since n is most often 3 and
seldom greater than 6, the computational burden of choosing
the longer Z; is not prohibitive.

By the singular-value-decomposition (SVD) theorem [4], B;
may be factored as

Bi=Us S VT (36)

where Uy and V; are orthogonal and S; is a diagonal my x 3n
matrix, where m; is the dimension of Z;, and

(St)u1 2 (Sk)22 2> ... 20 (37)
so that
Pzy=Us DL UT | (38)
with
Dy = S SZ' s (39)

which is a diagonal and positive semi-definite m x m; matrix.

If we now define

o = U}? Z; , (40)
C.=UTHe (41)

then
(:=CrO0+ 81 (42)

where €, ~ M{(03n, Ianxan). If £max,k is the largest index for
which (Sg)y > 0, then the first £ya x components of ¢, con-
tribute fmay & independent measurements of ©. (The remain-
ing components are simply the constraints on Zg.) This min-
imal set of measurements may now be combined in a batch
algorithm to yield the normal equations

N N
Ped(-)+ Y CE DI G| ©(+)=3 G DG
k=1 k=1
(43)
N
Pad(+)=Pea(-)+ ) CIf DG, (49)
k=1
where the prime denotes the appropriate truncation. Likewise,
if we wish to process the measurements sequentially, the strl}c—
ture of the derived measurement noise is now in a form which
is convenient for square-root information filters [5].



Discussion and Conclusions

The above methodology considerably enhances the algo-
rithm of Reference 1 in that it now treats the statistical prop-
erties of the measurements properly within the framework of
maximum likelihood estimation.

The estimate is not optimal over all 2n sensor measurements
since effectively three of the measurements have been removed
in order to achieve attitude independence. Thus, the results of
this algorithm will differ somewhat from the results that would
obtain from a complete Kalman filter treating both the atti-
tude and the alignments. In particular, since the alignments
are computed from derived measurements to which the atti-
tude is not sensitive, it follows that the alignment estimates as
computed by the present algorithm will always be statistically
independent of the uncalibrated attitude estimate, which will
not be the case of the truly optimal estimate over all 2n mea-
surements. The difference in the estimates is not expected to
be significant, however. Those alignments which are sensitive
to the set of derived measurements will clearly not be very
sensitive to the attitude errors once sufficient data has been
processed. Likewise, those alignments which are not very sen-
sitive to the derived measurements will be determined largely
by the prelaunch calibration anyway. Thus, we expect little
accuracy to be lost in our approximation.

Since the z;; » are zero-mean and have easily calculable vari-
ances, the detection of outliers among these derived measure-
ments is very direct. In general, these outliers will be due to
an improper measurement of a vector W,-,k or VAV‘,-,;c (due, for
example, to the misidentification of a star). In this case, it is
expected that most of the z;; for the given i and k or j and
k will be outside the bounds. This makes the identification of
outliers simple.

Very often, spacecraft carry sensors of widely different accu-
racies, some supplying attitude information with an accuracy
of 10 arc sec while others are accurate to only 0.5 deg. If there
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are sufficient highly accurate sensors available most of the time,
there is little to be gained by estimating the alignment of the
coarse sensors simultaneously with the fine. In this case it is
preferable to estimate the alignments of the fine sensors first
using the attitude independent algorithm presented here and
then use simple regression techniques to estimate the attitude
of the coarser sensors using the computed spacecraft attitude
from the fine sensors to remove the ambiguity.
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