CHAPTER 12

THREE-AXIS ATTITUDE DETERMINATION METHODS

12.1 Parameterization of the Attitude
12.2 Three-Axis Attitude Determination

Geometric Method, Algebraic Method, ¢ Method
12.3 Covariance Analysis

Chapter 11 described deterministic procedures for computing the orientation
of a single spacecraft axis and estimating the accuracy of this computation. The
methods described there may be used either to determine single-axis attitude or the
orientation of any single axis on a three-axis stabilized spacecraft. However, when
the three-axis attitude of a spacecraft is being computed, some additional formal-
ism is appropriate. The attitude of a single axis can be parameterized either as a
three-component unit vector or as a point on the unit celestial sphere, but
three-axis attitude is most conveniently thought of as a coordinate transformation
which transforms a set of reference axes in inertial space to a set in the spacecraft.
The alternative parameterizations for this transformation are described in Section
12.1. Section 12.2 then describes three-axis attitude determination methods, and
Section 12.3 introduces the covariance analysis needed to estimate the uncertainty
in three-axis attitude.

12.1 Parameterization of the Attitude

F. L. Markley

Let us consider a rigid body in space, either a rigid spacecraft or a single rigid
component of a spacecraft with multiple components moving relative to each other.
We assume that there exists an orthogonal, right-handed triad o, ¥, W of unit
vectors fixed in the body, such that

ixX§=w (12-1)

The basic problem is to specify the orientation of this triad, and hence of the rigid
body, relative to some reference coordinate frame, as illustrated in Fig. 12-1.

It is clear that specifying the components of @1, ¥, and W along the three axes of
the coordinate frame will fix the orientation completely. This requires nine
parameters, which can be regarded as the elements of a 3 X3 matrix, 4, called the
attitude matrix: '

U, Uy Uy
A=lvy 0 Uy (12-2)

Wi Wy Wy
where &= (u;,up,u3)", ¥ =(v,,0,0,)T, and W= (w,,w,, w3)T. Each of these elements is
the cosine of the angle between a body unit vector and a reference axis; u,, for
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Fig. 12-1. The fundamental problem of three-axis attitude parameterization is to specify the orienta-
tion of the spacecraft axes @, ¥, W in the reference 1, 2, 3 frame.

example, is the cosine of the angle between @t and the reference 1 axis. For this
reason, A is often referred to as the direction cosine matrix. The elements of the
direction cosine matrix are not all independent. For example, the fact that @ is a
unit vector requires

W+ ui+ui=1
and the orthogonality of &t and ¥ means that
U0, + U0+ u30,=0

These relationships can be summarized by the statement that the product of 4 and
its transpose is the identity matrix

AAT=1 (12-3)

(See Appendix C for a review of matrix algebra.) This means that 4 is a rea/
orthogonal matrix. Also, the definition of the determinant is equivalent to

detA =it~ (V X W)

so the fact that @, ¥, % form a right-handed triad means that det 4 = 1. Thus, 4 is a
proper real orthogonal matrix.

The direction cosine matrix is a coordinate transformation that maps vectors
from the reference frame to the body frame. That is, if a is a vector with
components a;, a,, a; along the reference axes, then

u, u, u;lfa u-a a,
Aa=|vy v, vy ||la|=]V-a|=]aq, (12-4)
Wy, Wy, Wy || a, w-a a,

The components of Aa are the components of the vector a along the body triad &,
¥, w. As shown in Appendix C, a proper real orthogonal matrix transformation
preserves the lengths of vectors and the angles between them, and thus represents a
rotation. The product of two proper real orthogonal matrices 4= A4'A represents
the results of successive rotations by 4 and A4’, in that order. Because the transpose
and inverse of an orthogonal matrix are identical, AT maps vectors from the body
frame to the reference frame.

It is also shown in Appendix C that a proper real orthogonal 3 X3 matrix has
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at least one eigenvector with eigenvalue unity. That is, there exists a unit vector, €,
that is unchanged by A4:

Ae=e (12-5)

The vector & has the same components along the body axes and along the reference
axes. Thus, & is a vector along the axis of rotation. The existence of & demonstrates
Euler’s Theorem: the most general displacement of a rigid body with one point fixed is
a rotation about some axis.

We regard the direction cosine matrix as the fundamental quantity specifying
the orientation of a rigid body. However, other parameterizations, as summarized
in Table 12-1 and discussed more fully below, may be more convenient for specific
applications. In each case, we will relate the parameters to the elements of the
direction cosine matrix. Our treatment follows earlier work by Sabroff, ef al.,
[1965].

Table 12-1. Alternative Representations of Three-Axis Attitude
PARAMETERIZATION} NOTATION ADVANTAGES DISADVANTAGES COMMON APPLICATIONS
DIRECTION NO SINGULARITIES SIX REDUNDANT PARAMETERS IN ANALYSIS, TO TRANSFORM
COSINE A= [Alll NO TRIGONOMETRIC FUNCTIONS VECTORS FROM QNE REFER-
MATRIX CONVENIENT PROOUCT RULE ENCE FRAME TO ANOTHER
FOR SUCCESSIVE ROTATIONS
EULER CLEAR PHYSICAL INTERPRETATION ONE REDUNDANT PARAMETER COMMANDING SLEW MANEUVERS
AXIS/ANGLE (X3 AX1S UNDEF INED WHEN SIN ¢=0
TRIGONOMETRIC FUNCTIONS
EULER NO SINGULARITIES ONE REDUNDANT PARAME TER ONBOARD INERTIAL NAVIGATION
SYMMETRIC Q985049 NO TRIGONOMETRIC FUNCTIONS NO OBVtOUS PHYSICAL INTER.
PARAMETERS CONVENIENT PROOUCT RULE FOR PRETATION
{QUATERNION) {a) SUCCESSIVE ROTAT|ONS
GIBBS NO REDUNDANT PARAMETERS INFINITE FOR 180-DEG ROTA.- ANALYTIC STUDIES
VECTOR [ NO TRIGONOMETRAIC FUNCTIONS TION
CONVENIENT FRODUCT RULE FOR
SUCCESSIVE AOTATIONS
EULER NO REDUNDANT PARAMETERS TRIGONOMETRIC FUNCTIONS ANALYTIC STUOIES
ANGLES ®. 8,4 PHYSICAL INTERPRETATION (S SINGULARITY AT SOME 6 INPUT/QUTPUT
CLEAR IN SOME CASES NO CONVENIENT PRODUCT RULE | ONBOARD ATTITUDE CONTROL OF
FOR SUCCESSIVE AOTATIONS I-AXIS STABILIZED SPACECRAFT

Euler Axis/Angle. A particularly simple rotation is one about the 3 axis by
an angle ®, in the positive sense, as illustrated in Fig. 12-2. The direction cosine
matrix for this rotation is denoted by 44(®); its explicit form is

cos® sind® O
Ay(P)=| —sin® cos® O (12-62)
0 0 |
R e
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Fig. 12-2. Rotation About the Three-Axis by the Angle ®
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The direction cosine matrices for rotations by an angle ¢ about the 1 or 2 axis,
denoted by A (®) and A4,(P), respectively, are

1 0 0
A®)=10 cos® sind (12-6b)
L0 —sin® cos?
[cos® 0 —sind
A(P)=] 0 1 0 (12-6¢)
| sin® 0 cos®
The matrices A (®), A5(P), and A,(P) all have the trace
tr(A(®))=1+2cosd (12-6d)

The trace of a direction cosine matrix representing a rotation by the angle ® about
an arbitrary axis takes the same value. This result, which will be used without proof
below, follows from the observation that the rotation matrices representing rota-
tions by the same angle about different axes can be related by an orthogonal
transformation, which leaves the trace invariant (see Appendix C).

In general, the axis of rotation will not be one of the reference axes. In terms
of the unit vector along the rotation axis, & and angle of rotation, ®, the most
general direction cosine matrix is

cos @ + ef(1 — cos D) e;e,(1—cos®)+essin® e ey(1—cosd)—e,sin®
A= eje)(1—cosP)—eysin® cos®@+ e3(1—cos D) e,e3(1 —cos @)+ e sin®
ee;(1—cos®)+e,sin®  eyey(l —cosP)—e;sin®  cosP+ ef(1 —cos®)
(12-7a)
=cos®1+ (I —cosP)ee” —sin®E (12-7b)

where @e' is the outer product (see Appendix C) and E is the skew-symmetric
matrix

0 -~ e,
E=| e 0 =—e (12-8)
—e, e 0

This representation of the spacecraft orientation is called the Euler axis and
angle parameterization. [t appears to depend on four parameters, but only three are
independent because |&|=1. It is a straightforward exercise to show that A defined
by Eq. (12-7) is a proper real orthogonal matrix and that & is the axis of rotation,
that is, A@=eé. The rotation angle is known to be ¢ because the trace of 4 satisfies
Eq. (12-6d).

It is also easy to see that Eq. (12-7) reduces to the appropriate one of Egs.
(12-6) when & lies along one of the reference axes. The Euler rotation angle, &, can
be expressed in terms of direction cosine matrix elements by

cos® = [tr(4)~ 1] (12-9)
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If sin® # 0, the components of & are given by

e,=(Az;— A3)/(25in®) (12-10a)
e,= (A3~ A,3)/(2sin ) (12-10b)
e;=(A;— Ay)/(2sind) (12-10c)

Equation (12-9) has two solutions for &, which differ only in sign. The two
solutions have axis vectors & in opposite directions, according to Eq. (12-10). This
expresses the fact that a rotation about & by an angle @ is equivalent to a rotation
about —é by —@.

Euler Symmetric Parameters. A parameterization of the direction cosine
matrix in terms of Euler symmetric parameters q,, q,, g, q, has proved to be quite
useful in spacecraft work. These parameters are not found in many modern
dynamics textbooks, although Whittaker [1937] does introduce them and they are
discussed by Sabroff, et al, [1965]. They are defined by

qIEelsin% (12-11a)
p=esinS (12-11b)
p=essing (12-11c)
gi=cos T (12-11d)

The four Euler symmetric parameters are not independent, but satisfy the con-
straint equation

gi+qi+qi+qi=1 (12-12a)
These four parameters can be regarded as the components of a quaternion,
4
|92 |_[ 19 B
q=| & _[q4] (12-12b)
9a

Quaternions are discussed in more detail in Appendix D. The Euler symmetric
parameters are also closely related to the Cayley-Klein parameters [Goldstein, 1950].

The direction cosine matrix can be expressed in terms of the Euler symmetric
parameters by

R—qi—gi+qi 299+ 9:q,) 2(9,93~ 4,94)
A= 99~ 9:90)  — i+ G- +qi  2(929:+919s) (12-13a)
29,95+ 9:9s) 29295 9,94) -qi-qi+qi+q;

=(gi-q*)1+2qq" - 24,0 ‘ (12-13b)
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where Q is the skew-symmetric matrix

0 4 9,
9= ¢ 0 =—gq (12-13¢)
-0 9, 0

These equations can be venified by substituting Eqs. (12-11) into them, using some
trigonometric identities, and comparing them with Eq. (12-7).

The Euler symmetric parameters corresponding to a given direction cosine
matrix, 4, can be found from

qa= 2 3 (14 A+ A+ Ayy)' V2 (12-14a)
q,=ﬁ;(,423—432) (12-14b)
q2=4L%(A3,—A,3) (12-14c)
43=Z%]:(A,2—A2,) (12-14d)

Note that there is a sign ambiguity in the calculation of these parameters.
Inspection of Eq. (12-13) shows that changing the signs of all the Euler symmetric
parameters simultaneously does not affect the direction cosine matrix. Equations
(12-14) express one of four possible ways of computing the Euler symmetric
parameters. We could also compute

(1+A11"422“A33)l/2

| —

g, ==

|
9= z;;(Anz'*”Azl)

and so forth. All methods are mathematically equivalent, but numerical inaccuracy
can be minimized by avoiding calculations in which the Euler symmetric parameter
appearing in the denominator is close to zero. Other algorithms for computing
Euler symmetric parameters from the direction cosine matrix are given by Klumpp
[1976].

Euler symmetric parameters provide a very convenient parameterization of the
attitude. They are more compact than the direction cosine matrix, because only
four parameters, rather than nine, are needed. They are more convenient than the
Euler axis and angle parameterization (and the Euler angle parameterizations to be
considered below) because the expression for the direction cosine matrix in terms
of Euler symmetric parameters does not involve trigonometric functions, which
require time-consuming computer operations. Another advantage of Euler sym-
metric parameters is the relatively simple form for combining the parameters for
two individual rotations to give the parameters for the product of the two rotations.
Thus, if

A(q")=A4(4)4(q) (12-15a)
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then
94 95 —92 qi
e Th B0, (12-150)
92 — 49 9 9
@ 9 ¢ 4.
Equation (12-15b) can be verified by direct substitution of Eq. (12-13) into Eq.
(12-15a), but the algebra is exceedingly tedious. The relationship of Eq. (12-15b) to
the quaternion product is given in Appendix D. Note that the evaluation of Eq.
(12-15b) involves 16 multiplications and the computation of Eq. (12-15a) requires
27; this is another advantage of Euler symmetric parameters.

Gibbs Vector. The direction cosine matrix can also be parameterized by the
Gibbs vector,* which is defined by

g;qu/qﬁe;tan% | (12-162)
_ )

82= G2/ s = estan~ (12-16b)
_ P

81=93/qa=estan5 (12-16c)

The direction cosine matrix is given in terms of the Gibbs vector by

I+gl—gl-g 2Agi8+8)  2Agig—8)
Ag18—8) l-gi+gi—g 2g8+8)

T lagitgivgl
2g18:t8)  Agg—&)  1-gi-gitgl

(12-17a)
1-g)1+2gg" -2
= (1-¢) £8 (12-17b)
|+ g
where G is the skew-symmetric matrix

0 -z &2
G=| g 0 -—g (12-17¢)

— 82 & 0

Expressions for the Gibbs vector components in terms of the direction cosine
matrix elements can be found by using Egs. (12-16) and (12-14). Thus,
Ay —As,

BT T A, v Ap+ 4y, (12-18a)

*Gibbs (1901, p. 340] named this vector the “vector semitangent of version.” Cayley (1899] used the
three quantities g, g, g5 in 1843 (before the introduction of vector notation), and he credits their
discovery to Rodriguez.
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- AnAs (12-18b)
2T YA, A, + Ay i
Ap—A
AL (12-18¢)

BT 154, + A+ Ay

Note that there is no sign ambiguity in the definition of the Gibbs vector and that
the components are independent parameters. The product law for Gibbs vectors
analogous to Eq. (12-15b) can be found from that equation and Eq. (12-16), and
takes the convenient vector form

._B8t8-gXg

I-g¢g
The Gibbs vector has not been widely used because it becomes infinite when the
rotation angle is an odd multiple of 180 deg.

g (12-19)

Euler Angles. It is clear from the above discussion that three independent
parameters are needed to specify the orientation of a rigid body in space. The only
parameterization considered so far that has the minimum number of parameters is
the Gibbs vector. We now turn to a class of parameterizations in terms of three
rotation angles, commonly known as Euler angles. These are not as convenient for
numerical computations as the Euler symmetric parameters, but their geometrical
significance is more apparent (particularly for small rotations) and they are often
used for computer input/output. They are also useful for analysis, especially for
finding closed-form solutions to the equations of motion in simple cases. Euler
angles are also commonly employed for three-axis stabilized spacecraft for which
small angle approximations can be used.

To define the Euler angles precisely, consider four orthogonal triads of unit
vectors, which we shall denote by

The initial triad X,¥,Z is parallel to the reference 1,2,3 axes. The triad X’,¥’,%
differs from X,y,z by a rotation about the / axis (i=1, 2, or 3 depending on the
particular transformation) through an angle ¢.* Thus, the orientation of the X',¥',2’
triad relative to the X,¥,2 triad is given by 4,(¢) for i=1, 2, or 3, one of the simple
direction cosine matrices given by Eq. (12-6). Similarly, the X”,¥”,2” triad orienta-

. . nr omy omy e . . . .. L AN,
tion relative to the X',§’,2' triad is a rotation about a coordinate axis in the ,y’,2

system by an angle 8, specified by 4,(8), j=1, 2, or 3, j # i. Finally, the orientation
of 4, V,w relative to X”',¥”,2"" i1s a third rotation, by an angle y, with the direction
cosine matrix 4, (¥), k=1, 2, or 3, k # . The final ¥, W triad is the body-fixed
triad considered previously, so the overall sequence of three rotations specifies the

orientation of the body relative to the reference coordinate axes.

* Although Euler angles are rotation angles, we follow the usual convention of denoting them by lower-
case Greek letters,
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A specific example of Euler angle rotations is shown in Fig. 12-3. Here, the
first rotation is through an angle ¢ about the z axis, so that the z and 2’ axes
coincide. The second rotation is by § about the X’ axis, which thus is identical with
%”. The third rotation is by ¢ about the 2 (or W) axis. This sequence of rotations is
called a 3-1-3 sequence, because the rotations are about the 3, 1, and 3 axes, in that
order. The labeled points in the figure are the locations of the ends of the uait
vectors on the unit sphere. The circles containing the numbers 1, 2, and 3 are the
first, second, and third rotation axes, respectively. The solid lines are the great
circles containing the unit vectors of the reference coordinate system, X,¥,z. The
cross-hatched lines are the great circles containing the unit vectors of the body
coordinate system, @i, ¥,%. The dotted and dashed lines are the great circles defined

by intermediate coordinate systems,

Fig. 12-3. 3-1-3 Sequence of Euler Rotations. (See text for explanation.)

The direction cosine matrix for the overall rotation sequence is the matrix
product of the three matrices for the individual rotations, with the first rotation
matrix on the right and the last on the left:

A313(¢,_074’) = A3($)A4(9)A5(9) =

cosy cosp — cosdsiny sing cosysing+cosfsingcosep  sinfsiny
—sinycosp—cosfcosysing —sinysing+cosfcosycos¢ sinfdcosy |(12-20)
sindsing —sinflcos¢ cosd

The Euler axis corresponding to A4;,5(¢,4,¢) can be found from Eq. (12-10); it is
denoted by & in Fig. 12-3.

The 3-1-3 Euler angles can be obtained from the direction cosine matrix
elements by

f=arccosAs, (12-21a)
¢= —arctan(A;,/A3;) (12-21b)
y=arctan(A4,;/Ay;) (12-21¢)
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Note that Eq. (12-21a) leaves a twofold ambiguity in 8, corresponding to siné being
positive or negative. Once this ambiguity is resolved, ¢ and ¢ are determined
uniquely (modulo 360 deg) by the signs and magnitudes of 4, 4,;, 4, and 4,,,
with the exception that when @ is a multiple of 180 deg, only the sum or difference
of ¢ and ¢ is determined, depending on whether § is an even or an odd multiple of
180 deg. The origin of this ambiguity is apparent in Fig. 12-3. The usual resolution
of this ambiguity is to choose sin# >0, or 0 < § < 180 deg.

Other sequences of Euler angle rotations are possible, and several are used.
Figure 12-4 illustrates a 3-1-2 sequence: a rotation by ¢ about z followed by a
rotation by ¢ about X’ and then by a rotation by ¢ about . This is often referred
to as the yaw, roll, pitch sequence, but the meaning of these terms and the order of
rotations implied is not standard. The direction cosine matrix illustrated in Fig.
12-4 is

A312(9,0,9)= A ($)4(0)A45(¢) =

cosycos¢—sinfsinysing cosysing+sindsinycos¢ —cosfsiny
—cosfsing cosfcos¢ sind (12-22)
sinycos¢+sinfcosysing sinysing—sinfcosycosd  cosdcosy

Fig. 12-4.  3-1-2 Sequence of Euler Rotations. (See text for explanation.)

The expressions for the rotation angles in terms of the elements of the
direction cosine matrix are

f=arcsinA4,, (12-23a)
¢=—arctan(A4,,/A45;) (12-23b)
y=—arctan(A4,,/ A4;;) (12-23c)

As in the 3-1-3 case, the angles are determined up to a twofold ambiguity
except at certain values of the intermediate angle 8. In this case, the singular values
of @ are odd multiples of 90 deg. The usual resolution of the ambiguity is to choose
—90 deg < <90 deg, which gives cosé > 0. ‘
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If ¢, 4, and y are all small angles, we can use small-angle approximations to
the trigonometric functions, and Eq. (12-22) reduces to

I ¢ —¥
Ayp($.0.4) =| ~¢ l 9 (12-24a)
Y

where the angles are measured in radians.

It is not difficult to enumerate all the possible sequences of Euler rotations.
We cannot allow two successive rotations about a single axis, because the product
of these rotations is equivalent to a single rotation about this axis. Thus, there are
only 12 possible axis sequences:

313,212,121,323,232,131,
312,213,123,321,231,132.

Because of the twofold ambiguity in the angle § mentioned above, there are 24
possible sequences of rotations, counting rotations through different angles as
different rotations and ignoring rotations by multiples of 360 deg. The axis
sequences divide naturally into two classes, depending on whether the third axis
index is the same as or different from the first. Equation (12-20) is an example of
the first class, and Eq. (12-22) is an example of the second. It is straightforward,
using the techniques of this section, to write down the transformation equations for
a given rotation sequence; these equations are collected in Appendix E. In the
small-angle approximation, the 123,132,213,231,312, and 321 rotation sequences
all have direction cosine matrices given by Eq. (12-24a) with the proviso that ¢, 4,
and ¥ are the rotation angles about the 3, 1, 2 axes, respectively. Comparison with
Eq. (12-13) shows that in the small-angle approximation, the Euler symmetric
parameters are related to the Euler angles by

=70 (12-24b)
!

Ga=3¥ : (12-24c)

B=3¢ (12-24d)

Gs~1 (12-24e)
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